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I. INTRODUCTION AND REVIEW OF LITERATURE

Consider management activities associated with efficient raw
material handling, maintenance (or repair) policy establishment, work-
in-process material handling, production cost reduction, economic plant
design and layout, distribution and warehousing of finished products,
resource allocation, sales cost reduction, budget control, etec. All
these managerial activities may be performed based on the analysis of
demend or supply rates, which may change with time, and which should
explicitly be considered in inventory management. For example, the
price of some raw material used by menufacturers or the demand rates
of customers for some products may exhibit considersble fluctuation in
a seasonal pattern, and realistic inventory models must account for this
uncertainty in demand.

"When to order" and "How much to order" are two fundamental ques-
tions involved in every inventory system. Inventory systems are largely
divided into two groups, according to whether any managerial control
over demand or resupply 1s possible. One group of inventory systems
operates under essentially controllable demand. Most businesses and
military inventory systems come under this category. On the other hand,
the resupply of water into dams, for example, is not controllable. This
study is concerned with the first group of inventory systems, i.e.,
those which exhibit some freedom in the determination of when, and in
what quantity, the inventory should be replenished. In particular,

this thesis is concerned with minimizing the cost of maintaining



inventories, while at the same time keeping a sufficient stock on hand
to meet contingencies arising from random demand and lead time delay.

Inventory systems are operated largely based on some operating
policies concerning review systems and ordering rules. The so-called
transactions-reporting systems and periodic-review systems are commonly
used for inventory system review. When transactions reporting is used,
2ll transactions of interest (for example, demand, placement of order,
receipt of shipment, etc.) are recorded as they occur, and the informa-
tion is immediately made known to the decision meker. For example, it
ma2y be possible to make decisions concerning the operation of the
system, such as the decision whether or not to place an order, each
time a demand occurs. Though it may be costly and difficult to use a
reporting system of this type, there are benefits to be gained if it is
not too costly, because, among other things, it may be possible to cut
down on the average investment in inventory by doing so. On the other
hand, in the periodic-review systems an order can be placed only at a
review time with corresponding savings in the operztion of the inven-
tory system, but with likely additionel penalties in inventory holding
and backorder costs.

Some examples of operating doctrines are the so-called <Q, r>
<R, r> <R, T> <nQ, r, T> and < R, r, T> identified in the
book, Analysis of Inventory Systems, written by Hadley and Whitin (1963),
where Q 1s an order quantity, R and r are certain control limits
on inventory level, and T 1is a review period. Among those five doc-

trines, the <Q, r> and <R, r> doctrines are associated with



transactions reporting, and the other three are associated with periodic
review.

In particular, the <R, r> model is used for transactions report-
ing with two inventory control levels r and R (R >r) such that )
if the inventory level falls to x, x <r on some demand, we order
up to the level R , i.e., a quantity R-x 1is ordered. Such doctrine
is referred to as an "Rr" doctrine.

The <Q, r> model is a special case of <R, r> model with
R=r+Q . With the model, an order is placed when the inventory level
reaches the reorder point r . Therefore, it is necessary to examine
the system after every demand. It is sometimes called a continuous
review system.

The <R, T> model is called an "order up to R"” doctrine with a
review time period T . An order should be placed at each review time
if there have been any demands at all in the past period. A sufficient
qQuantity is ordered to bring the inventory position or the amount on
hand plus on order up to a level R . With this system, the quantity
ordered can vary from one review period to the next one.

The <R, r, T> model is referred to as an "Rr" rule, which
makes a procurement at a review time only if the inventory position or
the amount on hand plus on order is less than or equal to r , where
the inventory position is defined to be the amount on hand plus on order
minus backorders. The "order up to R" rule is a special case of an

"Rr" rule in which r = R-1 when the inventory levels are treated as



discrete variables, eand r = R when they are treated as continuous

variables.

The <rQ, r, T> model is 2 "mQ" doctrine. The quantity ordered
is chosen to be an integrel multiple of scame fundamental quantity Q
i.e., nQ for integer n . A procurement is mede at a review period
only if the inventory position or the amount on hand plus on order at
the review time is less than or equal to r . It may not get the
inventory position reached up to a level R . After the order is placed
the appropriate inventory level is less than or equal to R=r+Q . It
will be observed that when the inventory levels are treated as discrete
variables, then an "order up to R" rule is a special case of the "mR"
rule for which Q@ =1 and R =r+1 . When the inventory levels are
treated as continuous variables, it is still true that the "order up to
R" rule is a special case of the "nQ"” doctrine in the limit as Q —=> 0.

One approach to inventory system analysis is to optimize some or
all of the parameters r, Q, R, and T, given a particular review system
and ordering rule, say of one of the types above. The objective func-
tion for such optimizations typically is a suitable average inventory
cost, depending on parameters such as Q, R, r, T, as well as on a set
of relevant unit costs. The details of the computation of this average
inventory cost, whether "ensemble" or "time"”, will be determined by
what is assumed about the stochastic process modeling the generation of
demands. Such a stochastic process is a description of a random phe-
nomenon changing with time. In fact, it is defined to be a family of

random variables. Therefore, the family of random demands, say



{Nt; t ¢ T} with the index set T , is a stochastic process, where
{Nt} represents the cumulative demand by time t >0 . The assump-
tions concerning Nt once made, one may infer the relevant properties
of the so-called "Inventory Position Process {IP_t; t > 0}," and thence
the relevant properties of the so-called "Net Inventory Process

{NISt; t > 0}," from which, finally, the cost process is derived whose
average we seek, where the net inventory is defined to be the amount on
hand minus backorders.

In consideration of a continuous-review inventory system with
backorders, Galliher, Morse and Simond (1958), and Hadley and Whitin
{1963) have shown that under the <Q, r> model the limiting distribu-
tion of inventory position {IP,C; t >0} 1is uniform on the set
{r+l1, r+2, ..., r+Q}, when the interarrival times {Xi; i=1,2,...}
between successive demands are independently and identically distributed
(iid) random variables possessing negative exponential distribution and
units are demanded one at a time.

Under the slightly modified replenishment policy <nQ, r>,
Simon {1968) has also achieved the same result for the demand process
in which the demand quantity is random, lead times are arbitrarily
distributed, and backorders are allowed. However, the <nQ, r> model
has been studied under the assumption of stationary demand process,
and it functions in the same manner of the <nQ, r, T> periodic-
review model operation with the varied review pez:iod T .

Sivazlian (1974) has generalized the work done by Galliher, Morse

and Simond (1958), and Hadley and Whitin (1963). With the restriction



that units be demanded one at a time, he has shown that the limiting
distribution of inventory position is uniform over the set {r+1, r+2,
..., r+Q} 2and hence is independent of the distribution of the iid
interarrivel times {X;; i =1, 2, -

Richards (1975) seems to suggest that the result of Sivazlian is
a special case of the result given by Simon. In addition, he showed
that in the case of random demand quantity the limiting distribution
is not uniform under the <Q, r> policy.

It is known that the application of the Markov Chain Theory to
inventory system analyses has the advantage of yielding directly the
state probabilities of inventory positions so that the average annual
cost can be easily determined. Some discrete-parameter stochastic
processes {X,; t =0, 1, 2, ...} have the outcome functions {Xt(w)}
with w € Q0 (sample space) which range over the elements of a countable
state space S = {1, 2, ...} . Therefore, z finite discrete-parameter
stochastic process has the outcome functions {X%(w); w € Q} which
range over the elements of a finite state space S = {1, 2, ..., N} .

A discrete-time Markov chain 1s a stochastic process {Xt; t =0, 1,

2, ...} possessing the state space S = {i, 2, ...} or S=1{1, 2,
..., N} and satisfying the Merkov property that the future state of

the system is determined according to transition probabilities depend-
ing only on the current state of the system. In other words, a seguence
of states chosen by such stochastic process forms a discrete-time Markov

chain. If the transition probabilities change with time, then the



Markov chain is called nonstationary. Otherwise, it is called station-
ary.

In the case of periodic-review inventory systems, Hadley and
Whitin (1963) have applied stationary Markov Chain Theory to find the
limiting distributions of inventory positions {IPTk H Tk >0 for k =
0, 1, 2, ...} (where T, is the K2 review time) with a constant
review interval T such that T = Tk+l - Tk for 211 k , and finite
state spaces S = {r+1, r+2, ..., r+Q} and S ={r+1, r+2, ..., R}
for the <mQ, r, T> model and the <R, r, T> model, respectively.

Veinott (1965) studied on the nonstetionary periodic-review inven-
tory problems with arbitrary demand process in a very general manner.
He did not investigate the specific structure of the relation between
{IPTk} and {D(Tk’Tk+§]; g>0} (k=0,1, 2, -..) and the sufficient
conditions for the existence of the limit distribution of {IPTk} .
Rather he worked on determining optimal policies under the assumption
of independent random inter-period demends.

None of the above authors considered the possibility of the applica~

tion of the nonstationary Markov Chain Theory to the periodic-review

inventory models with nonstationary (or nonhomogeneous) demend process.

A. Research Objective

The primery objective of this study is to analyze nonstandard
inventory models, with general independently and identically distributed
(iid) inter-demand times for transactions reporting, and nonstationary

Markov demand for periodic review.



This subject will be developed in the context of the case in which
demands occurring when the system is out of stock are backordered,
units are demanded one at a time, and procurement lead time is constant.
Moreover, the inventory system under study will consist of just one
stocking point with a single source for resupply.

Under the above assumptions, the cumulative demand by time t ,
{Ni; t > 0} , is a discrete-valued continuous-parameter stochastic
process with sample paths increasing in unit steps- {N%} will be
analyzed to describe probabilistically the inventory position {IP_ ;

T 2> 0} , under the <Q, r> model for transactions reporting, and under
the <m, r, T> and <R, r, T> models for periocdic review.

During the process of analyzing {Nt; t >0} under the <Q, r>
model for transactions reporting in Chapter II, it will be shown that
the inventory position {IPt5 t > 0} totally depends upon the demand
process {Né; t > 0} . For example, if an inventory system is started
with IP,=r+i (i=1,2, ..., Q) at time t = O, then Ip, =T+
{(=1,2, ..., Q) at time +-r >0 can be reached after the (i-j)+
or {i+(m-1) -Q+(Q-3);m=1,2, ...3 demand materialization by
time t-7 , where T 1is a constant procurement lead time, m denotes
the total number of order placements by time t-7 and (i -j)+ =
w2x(0, i-j) . In other words, P{IPt-T = x} 1is a function of
P{Nf_T =y} , as {II%_T} is determined by {Nf_T} . In spite of the
relation, we shall prove that given I, =r+i (i =1,2, «.., Q) at
time t =0, {IPt-T} and {D(t-T,t]} are mutually independent of

each other (where D(t-— ] is a lead time demand and so
iy



D(t-T,t] =X, - N%_T), even in the case of nonstandard (non-Poisson)
inventory models with general iid inter-demand times. If the inter-
arrival times are exponentially distributed, which is known as a
memoryless process, then the above independency follows. However, it
may not be so obvious for the case where the inter-arrival times are
generated from other types of distributions.

Nobody has proved the above independency yet. With its proof, the
analysis of net inventory process {NISt; t 2;0} will become straight-
forward, from which the cost process can be immediately derived whose
average we seek. Therefore, the joint distribution of {IPt-T} and
{Dt-T,t]} will be determined first to find the distribution of {NISt}
needed for the expected annual cost analysis, where by definition

NIS, = IP with t>7>0 .

(v t-7 - D(

te1,t]

The asymptotic limit distributions of {IPt_T], {D( b1, t]} and
{NISt} will also be evaluated in the chapter. By use of the direct
Laplace-Stieltjes Transform approach and Key Renewal Theorem (see Smith
(1958) and Takacs (1958)), these limiting distributions will be deter-
mined.

It is known that the limiting behavior of a distribution function

F(t) can be found from the equality

lim . S L{F(t)} = lim  F(t) ,
S -—>»0 t %o

where L{F(t)} is denoting the Laplace transform of F(t) such that
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[=-]

LiF(t)} = | e F(t) @t for s>0 .
0

For completeness, our proof of the equality will be presented. (See
a2lso Holl et al. (1959), and Doetsch (1961).) Then, we shall show that
together with the equality, the so-called Convolution Laplace Transform
Theorem, the proof of which appears in Holl et al. (1959), Doetsch
(1961) and Widder (1971), can be used to get those limiting distribu-
tions. Under the assumption of the instantaneous procurement delivery,
Sivazlian (1974) has considered this approach to determine the uniform
limit distribution of {IP'L:} regardless of the distribution of the iid
inter-demand times under the <Q, r> model. However, when accounting
for a2 positive delivery time, the Convolution Laplace Transform Theorem
is not satisfactory to get the limit distribution of {D(t--r,t]} . A

corollary of the theorem is developed; for s >0 ,

t-r
Lf [ c(t-x) F(x)ax} = L{F(t)}-{6(¢)} - L{F(£)]} - J‘T e e(y)ay ,
0] 0]

where 1 >0 .

The limit distribution of {D(t_T’t]} can be more easily found by
applying Key Renewal Theorem. After the long-run limit distributions
of {IP,__} and {D(t_T’]} are evaluated in Section D, then the long-
run expected average annual values of on-hand inventory E[OI-I]Q and of

backorders E[ BO]Q and hence the long-run expected limit averzge



annual cost expression will be finally derived in Section E under the

assumptions of stationary cost variatioms.

In Chapter III, we shall first show that the process {IP., ;
k

T, > 0} associated with nonhomogeneous Poisson demand {D(

)
k Tk’Tki-lj
(=0, 1,2, ...) is a nonstationary Merkov chain. Then, the non-
stationary Markov Chain Theory will be applied to investigate the
limiting distributions of {IPT } and {NIS., 3 §2 0} , where {Tk]
X ST T T

0, 1, 2, ...) are the inventory system reviewing times with

(k

T 0, and so (T - Tk) = AT, is the (k+l)St review period.

0

k+1
Dobrushin (1956) defined the ergodic coefficient « , a quantity

important to the analysis of both stationary and nonstationary Markov
chains. Hajnal (1956) and Mott (1957) verified conditions (implicitly
in terms of the ergodic coefficient) for a nonstationary finite Markov
chain to be weakly ergodic, a condition important in determining when
the Markov chain is strongly ergodic and so has a long-run distribution.
A Markov chain being weakly ergodic is equivalent to the Markov chain
with the long-run behavior of "loss of memory without convergence,”
which means that the probzbility of being in a particular state is
eventually independent of its initial state, and a strongly ergodic
Markov chain has the "loss of memory with convergence” behavior . Paz
{1970, 1971) extended the work of Hajnal to infinite matrices by use
of a new coefficient & which is defined to be §(P) = 1 - o(P) for
a transition probability matrix P and sometimes more conveniently
used. Conn (1969), Medsen and Conn (1973), and Madsen and Isaacson

(1973) (Isaacson and Medsen (1976)) gave conditions in terms of left



eigenvector convergence for a Markoev chain to be strongly ergodic.
Bowerman (1974+), and Bowerman, David and Isaacson (1977) have verified
sufficient conditions for the strong ergodicity of a Markov chain in

which the transition matrices repeat themselves in a cyclic fashion

(i’e‘J Pnd_i_z:Pz; z=l) 2} c** d;n=0) l} 2} "')'
In the case of the <mQ, r, T> model, it will be shown that the
(=<
transition probability matrices of the chain {IP, ; T, > 0} are
" BT koo

doubly stochastic and hence the nonstationary finite Markov Chain Theory
is easily applied to determine that the long-run limit distribution of
{IPTk} is uniform under the assumption that the chain is weakly ergodic.
If the transition probability matrices Pk’s repeat themselves in a
cyclic fashion such that Pnd+z = Pz for £2=1,2, «e., d and n =

0, 1, 2, ... (for exsmple, d = 4 for a seasonal demand fluctuations),
then the chain is weakly ergodic and hence the uniform distribution
will be determined. The limit distributions of {IP& 1} and the long-
run expected limit values of on-hand inventory E[OH]zQ and of back-
orders E[BO]nQ will be evaluated in Section D and the corresponding
cost expression will be derived in the same section.

For the <R, r, T> model, the corresponding limit values of

P{(IP, =r+j} (§J=1,2, ---, R-7) for T, >0 and k=0, 1, 2,...,

E[OH]R and E[BO]R will also be evaluated and then the cost expression
will finally be derived in Section D, too. In the case of the
<R, r, T> model with stationary Poisson demand studied in Hadley and

Whitin (1963), the simpler closed form of solutions for the long-run
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limit distribution of {IPkT; T> O} (k = 0, 1, 2, ) will be
derived in Section C.

Similarly, P{IPT =r+3} (j=1,2, ««., R=-7) , E[OH]R
nd+g c

and E[BO]RC corresponding to the cyclic demand patterns under the
<R, r, T> model will alsoc be analyzed in the same section to derive
a cost expression.

Summary and concluding remarks are made in Chapter IV.
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II. TRANSACTIONS REPORTING

A. TIntroduction

When the inter-arrival times of customer demands are assumed
random variables, one may not know the state of én inventory system at
each point in time unless each transaction (for example, demand, place-
ment of order, receipt of shipment, etc.) is recorded and reported as
it occurs. Furthermore, in the real world it may never be possible to
predict customer demands with certainty; rather they had better be
described in probabilistic terms.

In the transactions-reporting inventory system, all transactions
of interest are recorded as they occur and the information is immediately
made known to the decision maker who will determine when to order and
how much to order. The so-called lot size-reorder point inventory
system operating doctrine referred to as the <Q, r> model is commonly
used for transactions-reporting inventory system analyses.

Under the <Q, r> model, a quantity Q is ordered each time the
appropriate inventory level (for example, the on-hand inventory, the net
inventory, the on~hand plus on-order inventory, or the inventory posi-
tion) reaches the reorder point r , where the inventory position
{II%; t >0} and the net inventory {NISt; t > 0} are referred to as
the amount on hand plus on order minus backorders and the amount on
hand minus backorders, respectively. In fact, the inventory position
is chosen as a suitable inventory level for defining the order quantity

Q and the recorder point r .
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Another description of the <Q, r> model is given as a trans-~
actions-reporting inventory system operating doctrine under which an
order is placed for the quantity Q +to ralse the inventory position to
the level r+Q as soon as a demand drops the inventory position below
the level r+1 . Thus, the inventory position successively falls from
r+Q +o r+1 during each procurement cycle, and instantaneously
rises again up to r+Q .

Under this <Q, r> model, Hadley and Whitin (1963) have analyzed
some transactions-reporting inventory systems with Poisson demand.

The primary objective of this chapter is to analyze the <Q, r>
transactions-reporting inventory system for the backorders case with
general iid (independent, identically distrivuted) inter-demand times
and constant lead time T . The <Q, r> model is known as & special
case of an <R, r> model with R = r+Q , under which an order is
placed to get the inventory position up to the level R when the inven-
tory level falls below xr . This <R, r> model, however, won't be
covered in this study-

The subject will be developed in the context of the case in which
demands occurring when the system is out of stock, are backordered,
units are demanded one at a time, and procurement lead time T is
constant. Moreover, it will be assumed throughout this chapter that
the inventory system consists of Jjust one stocking point with a single
source for resupply.

Under the above assumptions, the cumulative demand by time ¢,

{N%; t >0} , is a discrete-vaelued continuous-parameter stochastic
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process {a renewal counting process) with sample paths increasing in
unit steps, where a stochastic process is a description of a random
phenomenon changing with time. {N_; t >0} will be analyzed in Section
B of this chapter to describe probabilistically the inventory position
{IT%; t >0} under the <Q, r> model. During the process of analyz-
ing {N{} , it will be shown that {IPt5 t > 0} totally depends upon
the demand process {N_; t >0} . Let D(t—T,tj denote a procurement
lead time demand during the time interval (t -7, t] , so that

s e

2

In Sections B and C, Renewal Theory will be applied to prove that
even if {Pt} is dependent upon {Né} s {IPt-T} and {D(t-T,t]} for
t 27 >0 are mutually independent of each other. This nature of the
relation between {IPt—T} and {D(t-T,t]} leads to the formulation
of the joint distribution of {IE%_T} and {D(t~7,t]} which can be
used to determine the distribution of net inventory {NISt} needed for
the expected long-run average annual cost expression.

A corollary of the so-called Convolution Laplace Transform Theorem
will be develcped in Section B znd applied to the computation of the
asymptotic limit distributions of {IPt-T} s {D(t-v,t]} and {NISt}
in Section D.

In the last Section E, we shall discuss the nature of the relevant
cost factors in the inventory system. The stationary cost factors will

be considered for this study. Then, the probability, say POS ,» that

the system is out of stock, the long-run expected on-hand inventory
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E[0H] and the long-run expected backorders E[BO]Q will be deter-

Q >
mined and followed by the formulation of the long-run expected average
annual cost expression to be optimized under some assumptions on cost

factors. The objective cost function for such optimizations typically

is a suitable average inventory cost, depending on parameters such as

Q, r, T as well as on a set of relevant unit costs.

B. The Demend Process and Renewal Theory

A stochastic process is a description of a random phenomenon chang-
ing with time. From the point of view of the mathematical theory of
probability a stochastic process is best defined as a family {X(t);

t € T} of random variables, where the parameter set T is called the
index set of the process. Two important cases are a discrete parameter
set, e.g., T = {0, #1, +2, ...} , and a continuous parameter set, e.g.,
T = {t; -» <t <o} . Throughout this chapter we shall take the con-
tinuous parameter set, T = {t; t >0} .

When demands arrive at time points t,, Ty, -, (0 < t) <1,
< ...) , the successive inter-arrival times {Xi; i >11 are defined
as X1 = tl, X2 = t2 - tl, ceey Xn = tn - tn-l’ .e. Let Ni be
cumulative demand by time t , t >0 . Then {N,;t >0} isa
discrete-valued continuous-parameter stochastic process with sample
paths increasing in unit steps.

Assume that demands in the inventory system occur one at a time
and that the demand inter-arrival times {Xi; i=1,2, ...} are inde-

pendent identically distributed random variables with a common
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probability distribution F with F(0) = O , since demands occur one
at a time. PFurther, assume that the procurement lead time r 1is con-
stant and that units demanded when the system is out of stock are back-
ordered. Then, {IPt; t > 01 also is a discrete-valued continuous-
parameter stochastic process. Its range, however, is restricted to the
integers (r+1, r+2, -.., r+Q) . The integer-valued, or counting,
orocess {N%; t > 0} is a renewal counting process generated by the
inter-arrival times Xi , Since the successive inter-arrival times

Xl’ X2, .«., are assumed to be independent identically distributed

Dositive random variables. Denote by Sn the renewal epoch of the nth
demand (the time of the e renewal), so that {s,35n=0,1,2, ...}

are the partial sums of the remewal process {Xi} , that is,
S = I X., (so =0) . (2.2.1)

In other words, Sn is the waiting time to the nth demand, which
represents the time it takes to register n demands if one is observing
a series of demands occurring in time. There exists 2 basic relation
between the counting process {Nf; t ¢ T} and the corresponding sequence

of waiting times {sn} , namely,
N, = sup {n; S_<1t}, (2.2.2)

so that one has
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Proposition II.B.1l:

For t>0 and n=1, 2, ...,
N, 2n if and only if S, St (2.2.3)

from which it follows that

n if end only if S <t and S ., >t . (2.2.4)

=
]

If X and Y are independent random variables, with X having
distribution F and Y having distribution G , then the distribution

of X +Y is given by

o t-
[ @@ - [ [ awes)

X+¥<t ~® -

PX+Y<tl

jm F(t -y)ac(y)

-0

(-}

[ oz -x)ar(x) - (2.2.5)

-

Sometimes, the distribution P{X+Y <t} is denoted by F ¥ G(t) which
is called the convolution of F(t) and G(t) - If F end G have

densities f and g , respectively, then F * G has a density f ¥ g

given by
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t
£ *g(t) = j g(t -x)f(x)ax - (2.2.6)

0
When F =G, F*F 1is denoted by F2 . Similarly, we denote by

Fn the n-fold convolution of F with itself, that is,

F = F*¥F¥... *F. (2.2.7)
(n terms)
We have then
Fo(t) = 1 for t >0 and (2.2.8)
t
Fa(t) = F *F(t) = [ FE (t-x)aF(x) , (2.2.9)
0
for n=1, 2, ...
Therefore, from (2.2.7) and (2.2.8),
P{N, = n} = P{N_ >n} - P{N_ >n+1}
= P{s < t} - P{sn+l <t}
= Fn(t) - Fn+l(t) , (2.2.10)

which, using the notation P{S < t} = Fg (t) = Fn(t), can be proved as
n
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follows:

Since (N, = su;p(n:sn <t)} implies that {SNt <t} and {sNt+l > 3,

, t
P{N, = n} =J‘ P{s .5 > | s, = s} dP{sn < s}
o)
t
=] Px_, >t-s}ap{s <s]
o)

t
=) [1-F(t-5)] aF ()
0

t
Fn(t) - J‘ F(t -s) an(s)
0
t
Fn(t) - j‘ Fn(t -s) ar(s) ,
0

(using integration by parts),

F (t) - F .-(t) -

-
P,

The following theorem, the proof of which appears in Prabhu (1965),

is useful for validating some of the steps below.

Theorem II.B.l: Nt is & well-defined random variable, with finite

moments of all crders, that is,

a) PN, <=} =1,

b) E(NI} <o, for k=1,2, ...
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The result of the following lemma is well-known, but a verifica-

tion is given here for completeness.

lemma IT.B.1l: The mean of the random variable Nf is given by

Proof':

t«
lown]
=
s
1}

(== [--] (
z n-P{Nt =n} = = n[Fn(t) - Fn+l(t)], using Eq. (2.2.10),
n=0 n=0

[F () - Fo(2)] + 2[F,(8) -F5(2)] + -o0 + (k-1)[F_,(2) - F (£)]

+ KR (t) - F ()] + ...

F,(t) + Fo(t) + -0 + k(t) + ...

=z F (t) . Q.E.D.
n
n=1

The mean value function E{Nt} , denoted by m{t) , is called the
renewal function. From Theorem II.B.1, E{Nt} <o for all t . Fur-
thermore, the LaPlace-Stieltjes transform of 2 function uniquely deter-
mines the function. It will be shown that m(t) can be determined by
using the corresponding Laplace-Stieltjes transform. Tne Laplace-

tieltjes transform can often be more conveniently used to determine

the asymptotic distribution of a convolution. Therefore, we shall
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consider so-called 'The Laplace Transform Convolution Theorem', which
will be epplied later to determine the asymptotic limit distributions

of IPt and D( , and to prove the well-known Blackwell's Renewal

t-'r,t]
Thecrem in Section C of this chapter. Following two definitions appear

in Holl, Maple and Vinograde (1959).

Definition IT.B.1l: A function F(t) is said to be of exponential

order ebt if corresponding to the constant b there exists a pair

of positive constants to and M such that for all t at which F(t)

is defined and t > to 5
!e"bt P(t)] < M, (2.2.11)

Definition II.B.2: A function F(t) is defined to be of cdlass F if

for some constant b it is of exponential order ebt and sectionally
continuous.
The Laplace-Stieltjes (or just Laplace) transform ¢y of a function

© is defined as

Lo(t)] = 4(s) = [ e o) at . (2.2.12)
0

Integrating by parts,
[-<]

Lio'(t)} = [ P or(t) at
0
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0
s Tt o(t) at = s - L{e(t))
0
. Li{o(t)} = %-- L{o'(t)} - (2.2.13)

Using the Laplace transform notation, the important convolution
theorem shall be stated without proof. Its proof appears in EHoll,

Mzple and Vinograde (1959), Doetsch (1961), and Widder (1971)-

Theorem II.B.2: If F(t) and G(t) are of class & , then

t
L{ [ 6(t-x) F(x) ax} = L{F(t)} - L{G(t)}, for s >b ,

0

where e°° is the meximum of the exponential orders of F(t) and G(t).

Now, using Theorem II.B.2 and Lemma II.B.l, one may show how m(t)

and F onutually determine each other. That is,

8

L ; F ()} =
{n=l n : n=1

L{a(t)} L{F_(4)}

s (L{F()})
n=1

= _L_{_F_(t); (221)4)

1 - L{F(z)}
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from which it follows that

L{m(t)}

L{F(t)} = 1+ L{m(t)}

Hence, Eq. (2.2.1&) shows the one-to-one correspondence between m(t)

and F .

Corollary II.B.1l: If F(t) and G(t) are of class F , then, for

s>b end t2>17,

t-
L{] a(t-xE(x)ax) = L) - LE(e)] - LR} e alrday
© 0 (2.2.15)
where 1 1s & nonnegative constant.

Proof:

Define

1(4) I I e-s(X+Y) F(x) G(y) ax day

-S
eV a(y) ay ,

1]
-
o
A
»
~
5

such that the region A of integration is illustrated in Pig. II.1.
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Figure II.1. Tllustration of the domain of integration I{4)-

Then
. . P st L » =8t
L{F(t)} - L{6(2)} = | e F(t) at J e G(t) at
0 0
= 1lim e ¥ 7(x) ax I e™Y a(y) ay
k—>o | o
= lim  I(4) -
K —> o
Similarly,
t-T 2x _ t-1
L{ j‘ G(t ~-x) F(x) ax} = 1lim f e j G(t -x)F(x)ax | 4t ,
0 k—>e , 0

whose integral is equal to a double integral over the triangular

region shown in Fig. II.2.
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0 p—K i I
% ok

Figure II.2. Domein of integration I(R)-

2k _ . t-T
= 1lim [ e [ e(t-x) F(x) ax|at , for t 27
K->
T 0
2k-T kg
= lim J’ F(x) ax j e - a(t-x) dt
Ek—>ro 0] X+T
’.gk"l' 2k-x -s(x+y)
=  lim Flx)ax [ e &(y) &
k=>e 0 T
replaced t-x by ¥ ,
= lim I(R) ,
k>

where the region of integration R 1is composed of the three domains

AND, B and C (D = the complement of D) in Fig. II.1.

However,
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% 2k _ t
L{ | G(t-x) F(x) &x} = 1lim e je(t-x) F(x) ax | dat
0 E—>e 0
2k 2k-x —S(X+ )
= lim [ F(x)ax [ e Y/ e(y) ay
E—>=, 0
= lim I(R') ,
kK —>» o

where the region of integration R' 1is composed of the domains A N 5 B

B, C and D-

Since

lim  I(R') = L{F(t)} - L{c(%)} ,
K =—> o

T-T

L{ 7 G&(t-x) F(x) ax} = L{F(t)} - L{c(¢)} - 1im  I(D)

J
0 k e )
= L{F(8)} - L6(8)3 - 1m [ eV a(y) ay

k>

0
2k-y —sx
. J" e F(x) ax ,
0

where, given 0 <y <1,



2k -sx | 2k ~-sx
lim [ e Fkx)ax | < lim e |F(x)]ax =0

dJ
k=2 | op r K—=>o o q

(=]
for the convergence of J’ e 5% |F(x)]dx for s >b ,
| o)

= L{F(t)}-L{e(¥)} - lim IT e &(y) ay
k—>o 0

2 2k __ ]
. ‘f e F(x) ax - J,, e P{x) ax
0 2k-y _J

for 0<y<-rT,

2k
LELE)) - | e Vo) ay { 1im [ e F(x) ax)

0 Ek—>o=

LR} Le(6)) - TR} [ e o) ay -
0

Thus the proof is complete.

In order to determine the behavior of a distribution function as
t tends to infinity, the Leplace transform of the distribution can
often be used if the transform is known. This is illustrated by the
next two theorems. The first theorem will be stated without proof.
Its proof appears in Holl, Maple and Vinograde (1959) and Doetsch

(1961).
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Theorem II.B.3: If F(t) is sectionally continuocus with at most a

- . sz . bt <
finite number of discontinuities and of exponential order e , end

F'(t) 1is also sectionally continuous, then

. n
L{F' ()} = s - L{F(t)} -F0O) - = e
i=1

st. )
i + - .
[F(ti) = F(ti)]’ (S > D) b
where tl, t2, ey tn are the positive abscissas of the points of

discontinuity of F(t) -

Professor B. Vinograde has helped us to prove the following theorem

(see also Doetsch (1961)).

Theorem IT.B.k: If F(t) is of class & , and further if F(t) has

at most a finite number of discontimuities (at t,, ths <o) tn) s

and F'(t) is of class & , then

lim . s - L{F(t)} = lim F(t), for <0,
s —» 0 t —>o

if either limit exists.
Proof: From Theorem II.B.3,

-st.
i

lim s - L{F(t)} = 1lim . [L{F’(t)}+F(O+)+ ;_".le

-

s —>» 0 s —» 0 i=1

- {F(£]) - F(8)1]
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ST, [ R0+ RO ¢ 2 (FGD) - D)
s —>0 i=1l

L oed

by the assumption of class & ,

@

I

F'(t) at + F(O7) + £ (F(t:.:) - F(t7))

J .
0 i=1

lim  F(t) ,

il

i )
since
ti t; t
t
f F'(x) ax = F(x) + F(x) + oee + F(x)
0 o” t] t:
n
= F(t) - F(07) - £ (F(t) - F(¢3))
521 3 J
and thus
® t
j F'(x) d&x = lim j F'(x) dax
0 t—>=,

n
1im  F(t) - FOT) - = (F(t) - F(¢3)) -
t —>» J=1 J J

The rest of this section cites some important renewal theorems,

which will be used to study the distribution of procurement lead time

demand D(t—T,t] .
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Iet F(t) , g(t), and H(t) be functions defined for t >0
satisfying the relation
t

g(t) = H(t) + [ g(t-x)aF(x)
0

where F(t) and H(t) are known functions, and g(t) is an unknown
function to be determined as the sclution of the integral equation.
The integral equation is so-called a renewal-type egquation and its
solution is given by the following theorem, the proof of which appears

in Feller (1971), Prabhu (1965), and Ross (1970).

Theorem II.B.5: If

B(t) + [ glt-x) aFx), (£20),
0

g(t)

then

t . co
H(t) + f H(t -x) 4 m(x) , where m(x) = = Fn(x).
0 n=1

g(t)

As is pointed out in Parzen (1962) and Ross (1970), if the first
demand (renewal) occurs at time x , x <t , then from this time point
on the renewal process starts over again, and thus the expected number
of renewals in (O, t] is one plus the expected number to arrive in a
time t -x £rom the beginning of an equivalent renewal process. There-

fore,
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1+m(t-x), if x<t

E{Nt]xl=x} = .
0 , if x>t

Thus, the mean value function m(t) of the remewal counting process

{Nt 5 t € T} is also stated in the form of a renewal-type equation;

[=<]

m(t) = E{N.} = ; Fn(t) = J‘ E{Ntlxl = x} a F(x)
n=1 0
t

= j (L +m(t~x)) a F(x)

0

t
= F(t) + j‘m(t -x) 4 F(x) (2.2.16)
0

t
F(t) + j F(t -x) @ m(x) , using integration by part.
0

1

A nonnegative random varizble X 1is said to be lattice if there
exists d >0 such that ; P{X = md} = 1. Since, according to Feller
(1971), Parzen (1962) and ?225 (1970), a lattice random variable X is
defined to be a discrete random variable with the property that all
values x which X can assume with positive probability are of the
form x = md , for some real number 4 , and integer m , an integer-

valued random variable is a lattice random variable. Feller defines

the distribution of such a random variable to be arithmetic. We now



3%

state without proof the Key Renewal Theorem which will be used later

to determine the asymptotic limit distribution of D( as

t-’l’,t]
t —» o . Tt has been proved by Smith (1958) and Takacs (1958).

Theorem II.B.6 (Key Renewal Theorem): If the inter-arrival time X

has finite mean p and the distribution F 1s not arithmetic, and

4(t) is any function satisfying the conditions

2) H(t) >0 forall t2>0,

@
o) [ H(t) &t <=,

0]

¢) H(t) is nonincreasing ,
then it 1is true that

t ®
lim J" H(t -x) 4@ n(x) = x j H(t) at -
t—>e “o

C. Joint Distribution of Imventory Position and

Incremental Demand under the <Q, r > Model

In this section, under the <Q, r> policy, we shall first find

the marginal distribution functions of {IP_; t e T} , {D(t-'r t]; t e T}
2

and the residual waiting time {Zt_”'; t ¢ T} , and then prove that

are mutually independent of each other.

IPt-T and D(

t-7,t]
An inventory position IPt at time t totally depends upon the

demand process {Dt 5t ¢ T} . If an inventory system is started with
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IP, = T+i (i=1,2, ..., Q) at time t =0 , then P, =T+]
(3 =1,2, ..., Q) at time t-T >0 can be reached after the (i—j)+
or {i+ (m-1)Q+ (Q-3j);m=1,2, ...} demand materialization by

time t-~T , where m denotes the total number of order placements

by time t-~7 and
(i - 3)7 = mex{0, i-3} . (2-3.1)

Suppose now that we consider the sequence of eventg consisting of
the times at which an order in the amount of @ is placed and received
in the constant lead time ¢ . Defining Yk to be the time elapsed
between the (k—l)St and kﬁh orders, the sequence of random variables
{¥.; k=1, 2, ...} forms a modified renewal process in which the dis-

tribution functions are given by

Pi(yy) = BN 21}, (2-3-2)

Y, <y} = P{5; <y} 2

where i 1is the initial stock over the reorder point r , and like-

wise,

P{Yk S yk} = P{SQ S yk} = P{Nyk Z Q} = FQ(yk) ) (2‘3'3)
for k=2, 3, ...,

since

e =wnd <= {5(x1)q = Sir(r-p)g) S Vil
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<> {SQSyk} for k=2,3, «..

Thus, 2 new renewal process {Wm; m=20,1, 2, } is defined such

that

(2.3.4)

k 7 Sie(m-1)g 0 BT EH 203 e

where 'm = O' means that no order is placed yet. let (t - T - @)
and m be, respectively, particular values of the time T and the
serial number M of the last order placed no later than t - 7 . If
we assume that IPt-'r =r+j (§j=1,2, «.., Q) at time t -7 , then
we see that (Q - j) demands are further needed in the time interval
(t -1-6,t-17], for © >0, since the inventory position at time
t-717-06 is r +Q immediately after the mqth order is placed at

time t -7 -6 .

Theorem II.C.1l: For the continuous-review <Q, r> inventory system

with backorders allowed, constant lead time T >0 , iid customer inter-

arrival times with finite mean, units demanded one at a time, and with

TP, = r+1i (i=2,2, ..., Q) ,

) gt 2 O )
PIp,  =r+j} = P{Nt_7=(1-g)} +m§l I P{N =Q-j}aPW _<t-r-61,
" 8=0

for j=1; 2, OOO’Q,
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+
where P{Nt_T =(i-3)3 =0, if i<j .

Proof:

Denote by ¢m{T < t-7-6} the probebility that M =m and
T<t-r-6 sothat @ {T<t-7-6} = PW <t-7-6} .

Since the imventory position P, =T%] (3 =21,2, ..., Q)

can be reached after the demand materialization D(O £-1] such that
2

P0,t-11 = Y1

D(0,4m7] = Ngor = Mporop * Ny -F o) = {i+(m-1)Q} + (@-3),

for m=1, 2, ...,

[+=] g:‘t—T
P{IP_t_T=r+J} =m§o I P{IP"C-T=I+J 1M=m, T = t-1-6}
™ 6=0
A cdag{T<t-1-6}
+ (== 9='t-"r
=PN,_ = (1-9}+ 2 [ PN__-N___=Q-]
2=l 60

M=m, T=t-7-8} d P{W_ < t-1-6}
m—

+ ® Q=t-T
PN, __=(i-3)} + m§l f P{N, =Q-3} 4P{W_<t - -6} .
= 6=0
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let Zt-r be the time from t -1 until the first demand subse-

quent to t -1 , that is,

Z,_. = Sy . - (t-7), (2.3.5)
t-T
where SN <t-1< SN 41"
t-7 t-T

The variable Zt-T will be the residual or excess waiting time at
epoch t-1 . The distribution function of Zt-T can be determined by

use of the renewal equation for m(t) .

Theorem IT.C.2: For the inventory model of Theorem II.C.1,

t-T
PiZ, <z} =F(t-7+z) - [ [1-F(t-7+z-8)]an(g)
0
t-T+2
= [1-F(t-r+z-8)Jam(g) , for z>0.
t-T
Proof:

From Egs. (2.2.1) and (2.2.2), Sy St-T-
teT

P2, Sz} =PlO<sy - (t-7)<2}=P{t-v<§5;  <t-r+z}

Lo teT t-T



since

i

P{t-r -

Flt-1+

Flt-7+

P(t-7+

Flt-7+

F(t-1+

t-1+z

teT
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© o=T
n

l —
n=1 0

- a P{s, <€

ter
z) - F(t-7) + [ Plt-7-5§<X - <t-r+z-¢]
0

£ aPs, <&

X, St-r+z}+ =] P{t--r<Sn+l§t-q-+zlSn=§}

n=1
t-T
z) -F(t-1) + [ [F(t-r+z-€) - F(t-7-€)]dam(g) ,
0
(from Iemma 2.2.1) ,
t-T t-T
z) +[ Flt-r+z-g)dn(g) - [F(t-7) + [ F(t-7-¢)
0 0
+ d m(g)]
t-T
z) +[ F-7+z-8)dm(g) - n(t-7),
0
from Eq. (2.2.16) ,
te7
z) -] [1-F(t-v+z-§)]dn(E) (2.3.6)
0
[L-F(t-r+2z-£)] a m(E) , (2.3.7)
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t-7+z
Flt=v+2z) =m(t-7+2) -J’ F(t-1+z-£)dm(g), from Ea. (2.2.16).

0

let t-1+z be the time point at which the first demand occurs
after time t-7 . The random variable Zt--r may have a different dis-
tribution from those of Xi's- The distribution of D( — is deter-
mined in the next Theorem II.C.3 by partitioning in accordance with the
time t-T7+z at which the first demand occurs after time t -1 and

the time interval (t-t+z, t] in which k-1 demends occur.

Theorem II.C.3: Under the assumptions made in Theorem II.C.1,

lr
oj P{NT_Z =k-1} 4 P{Zt_T <z}, for k=1, 2, ...
P{D(t-'r,t] =k} =

P{Z >t} , for k=0

teTr

Proof':
For k=0,
P{D(t_T’t] =0} = PN, -N__=0}
= P{Zt_T >} .
For k>1,
P{D(t_T’t] =k} = P{Nt -N__ = k}



= JPN, -N__=kx|Z __=2}daPz __<z}
0
.
= J PN _,=%k-1}aPZ __ <z}
0
T
= J [Fq(r-2) - F(r-2)]a Pz, __ <z} -
0

Alternative Proof:

Given N. =n am N, =n+k (n,kx=0,1,2, ...) , S .- (t-T1)
£ t N,

-
i

is formed as follows:

sN -(t-7)=zt_ +Z2 . +X +"'+Xn+k’

+ T n+2 n+3
Let
S, = SNt - (t-7), P{s, <7} = Fk('r), and G(z) = P{Zt_T <z} .
Then,
say ~
P = = Pf - = = =
-{D(t-'i', £] x} = PN, - N___ =¥} P{N_ = k]
= Fk(T) Fk+l(l) 2
where
Fk('r) = P{Sk < T} = F. 1 * G(7)
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T

dr‘ Fk_l('T-Z) a G(z)

0

-
J PN_, 2k-1}a Pz, <z}

Therefore, for k=0,

P{D(y.r,57 = OF = Folr) - Fy(7)
=1-G(r) , since Fo(x) =1 for x >0 and
FO(T) =1
=1-Pz, __<+}
and for k >1,
P{D(t_T’t] =k} = Py * G(r) - F * G(r)

-~

I [Fk_l(T'-Z) - Fk(T"Z)] d G(z)

0

.
i PN _, =k-1} 4 P{zt_T <z} .
o}

". The proof is complete.



L3

The expectation of D(t--r £] is formed as follows:
2

@

B4 17}~ k}io e

Eox ijl -z) - F(r-z)]a?fz <z},

k=1
(from Theorem II.C.3) ,
T
= [Z k{ ('r z)-F 'r-z)}:]dP{Z,c <z}
=1 o
O

.
d!“ [{FO(T-Z) - Fl('r-z)} + E{Fl('r-z) - FQ(T-Z)}

0
+ 3{F2(T-Z) - F3(‘T-Z)} + "'] d P{Zt"T S Z}
T ==}
= [ (2 Flr-2))eaprz,__<2)
0 k=0
r
= OJI 1+ ]ﬁl F ('r z)lad P{Zt-'r <z}, (&)

since Fo(x) =1 for x>0,

© T
Pz, <<} + & [FR(r-z)aPz <z}
k=1,

G(r) + Z P * G(r) , where G(z) = P{Z, <z}
k=1 LT
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= &(r) + me(T-z) d G(z) , (directly from (4)) ,
0

[-<}

where m(r-z) = I Fk('r-z) .
k=1

As we saw in the proof of Theorem II.C.1, P{IPt—T =x} isa
function of P{Nﬁ_T = y} which means that the inventory position IPt-T
is determined by Ni_T . However, we shall prove that given IPb =r+i
(i=1,2, ..., Q) at time t =0 , for any distribution of the inter-

arrival times between demands the distribution of I?%_T is independent

of that of D(t-T,t] s even though D(t-r,t] = N% - Nt-T 8

Theorem II.C.k: Under the assumptions made in Theorem II.C.1,

=k} = P{IB,_ = r+3} P{Dy g =KD,

for j=1,2, .., @ &and k=0, 1, 2, ...

Proof:

As is done for the proof of Theorem II.C.1,

© o=t-7
= = + 3 =} = =r+]
Pe{IP,_ =7+3 Dy 7= K m}i [ P{IR, =+,
e=0

D(t_T’t] =k|M=mn, T =t-7-9}d¢m{T§t-T-G}
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p— 2
+

PN, =(i-3), N - N __ =%k} +

o O~t-T

z ] PN _ =N g =9Q-3, N -N__=k|M=m T=t-7-6}
T =0

- 4 P{ngt--r-e}

T

. . + . . -
where P{Nt_T =(i-3j3), N, -N,__ = k} =0 if i<

r L +
P, . =(i-3), N, - N __ =%k +
) O=t-7
m§1 [ PN, - N __ _o=9-3,N -N__ =kl4dPW <t-7-6}
5 6=0
-
j P{Nt__r = (i-3), N -N__ = k]zJc =z} aP{Z, <z} +
z=0

= r - = -3 - = =
=] g N e =03, NN = k]2, =]

-4 P{zt-'r <z} ad PW <t-7-6}
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zZ=7
n .. _ - +
J O oBN,__ =(-3),N_, =k-1} aPz,__<z} +
z=0
< nG:t--r Z2=T
E [ ] PNg=-3, N, -k-11aR{z, <z} R, <toreo)
T e=0 2=0

~
JZET + ‘
; Pm.__-= (i-3)3 P{NT_Z =k-1} 4 P2, __ < z} +
z=0
® O=t-t z=T1
s T r
m=1 J J

P

[P{Ny=@Q - j} P{N__, =k-1}] 4P{Z, _<z}ad P{W, <t-7-6}
=0 z=0

-

zZ=

N, =(1-9Y [ Px

‘o

P{TP, _

oy - k-1}a Pz __<z} +
z2=0
©  O=ter z=T
Z ] ENme-glaEi,< e} [ PN -x-11az, <o)
=~ =0 220 _j
+ © O=t~T
P, =(i-3)} +m§l J PNy =Q -3} aPW <t-7-6}
" 8=0
zZ=T
[ PN_, =k-1}a>Pz <z}
z=0

.= r+3j} P{D(t--r,t] = k}, from Theorems II.C.1l and II.C.3.
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.". The proof is complete.

D. Limit Distributions

In this section, we shall find the limit distributions of IPt-'r
and D(t-'r,t] , and of their Jjoint distribution, as t —» =« . The
Laplace-Stieltjes transforms of those distribution functions can often

be used as is done velow to determine such limit distributions. How-
ever, the 1limit distribution of D( T is more easily found by
a2pplying the Key Renewal Theorem.

It has been shown in Galliher, Morse and Simond (1958), and Hadley
and Whitin (1963) that under the <Q, r> policy with one-at-a-time
demand process, when the inter-arrival times Xi in a continuous-review
inventory system are independent, identically distributed and have
negative exponential distribution, the limiting distribution of the
inventory position is uniform on the set {r+1, r+2, ..., r+Q} .

Simon (1968) showed the same uniform distribution on the set {r+l,r+2,...,
r+Q} with the assumption of arbitrary inter-arrival time distributions
under a continuous-review < nQ, r> replenishment policy, under which
an amount nQ is ordered at the time of an inventory review, where n
denotes the nonnegative integer which will put the inventory position

on the set {r+1, r+2, ..., r+Q} . His result holds even when the
demand quantity is random and the procurement lead time for orders

placed are random variables with arbitrary distributions. With the

restriction that units be demanded one at 2 time, Sivazlian (1974) has
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considered the direct Laplace-Stieltjes transform approach to determine
the limiting distribution of the inventory position and obtained the
same result, namely, uniformity on the set {r+1, r+2, ..., r+Q}
regardless of the distribution of the inter-arrival times between de-
mands whenever the system operates under the <Q, r> policy- Richards
(1975) seems to suggest that the result of Sivezlian is a special case
of the result given by Simon, and considered the case of random demand
size in which the limiting distribution is shown not uniform under the
<Q, r> policy-

Under the assumption that the lead time T be constant, units are
demanded one at a time, unfilled demands be completely backordered and
the <Q, r> policy be used, we shall consider the direct Laplace-
Stieltjes transform approach and/or the application of the Key Renewal
Theorem to the inventory system to determine the limiting distributions
of the inventory position processes, of the lead time demand processes,

and of the joint distribution of them.

Theorem II.D.l: Under the assumptions made in Theorem II.C.1,

1
- 5' = - = = s = v
. lim 3 PIP, . =r+3l=§5 (G=1, 2, , Q)

H, (3)

if and only if all demands are of unit size.

Proof:

Iet

F(s) = L [P{IPt_T =r+3}] for i,j=1,2, .., Q
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Then,
A-, @ -St _
Fs) = | P{IP,__ =r+J} at
0
o ) + © n9=t-'r
= [ e =G e 2 [ Py =e-3)
‘ m=1
0 6=0
- d P{Wm <t-71-6}] dt, from Theorem II.C.1,
® st
= [ 5 [F ft-7-F L (t=7)
o (i-3) (1-3)"+1
® r.9=t-"l'
. ¢ - £ — -
PEU Tl T (80} Fiy(n gl - edeelet
e=0
from Eg. (2.3.4), where
£ ) = 7 (o) LW <t-r-6}
i+(m-1)Q 36 “it(m-1)Q @ ~t'm = ’
= eS¢ J[' e SYIF +(u) -F . (u)] du
0 (i-3) (i-3) +1
g ® -su r-e:u
+ m§1 [ e 0 (FQ_J.(O) -FQ_j+l(9))fi+(m_l)Q(u-9)dG:]du
=0 o=

replacing t-1 by u -
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Then, following the same procedure shown in Sivazlian (1974%) and
applying Theorem II.B.2 and Theorem II.B.k, it is verified that the
inventory position is uniformly distributed on the set {r+1, r+2,
..., T+Q} and is independent of the distribution of the interarrival
times between demands. It is not affected by the initial inventory
position either.

In order to determine the limiting distribution of the lead time

demand D( ; it 1s necessary to know the limiting distribution of

t-1,t]

the residual waiting time Zt--r at time t-7 . This can be done through
using the Key Renewal Theorem II.B.6. We know that the mean inter-

arrival time is expressed as follows:

k= E[X]

f” x 4 F(x)
0]
(2.k.1)

@

‘Jﬂ [1-F(x)] ax , teaking the integration by part.
0

Theorem II.D.2: Under the assumptions made in Theorem II.C.1,

z
f [1-F(x)]ax , for =z >0.

lim P{Zt__SZ} =
t —>»o ' 0

|-

Proof:

From Theorem II.C.2,



t-
P{z,_ <z} = F(t-7+2) - | T[l -F(t-t+z-g)]am(g) -
0
t-T
P{Zt_7>z} =1-F(t-1+z) + J“ [1-F(t~-1+z -€)]am(g)
0
‘ t-7
=h(t-7) + [ n(t-7-8)am(s),

0
letting h(t) =1 - F(t+z)

¥
h(y) + [ b(y-g)dm(g) , replacing t-7 by ¥ -
0

¥
lim Pz, >z} = lim [na(y) + [ n(y-£)am(g)]
T —> o V> 0

y
=0+ lim [ n(y-g)am(g) ,
y—>e=,

since lim F(t) =1,
T —>»=

(<]

j h(y) &y , from the Key Renewal Theorem
0 II.B.6,

|
A

@

=% j (1 -F(t-v+2)] at
l o]
=3 ‘J" [1-P(x)] dx, replacing t-T+z by X,

2z
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lim P& __<z}=1- 1lim P{Z___ >z}
t —>r o T Tt —>o ter
1 Z
=5 J[1-F(x)] ax -

0]

- - The proof is complete.

Now, we can determine the limit distribution of D(t-T £ using
P AR

the above theorem or directly forming the Laplace-Stieltjes transform.

Theorem II.D.3: Under the assumptions made in Theorem II.C.1 ,

Hz(k) = lim P{D(t_T’t] = k)

Tt 2o
(
T T T
J R a-2r@ o+ [ F,0)da
1o 0 0
'4 M , for k=1,2,...
1 T
l-;dr[l-F(X)]dx , fork =0 .
\ 0
Proof':
For k = 0, from Theorem II.C.3,
lim  P{D,, _ =0} = lim P{Z, _ > 1}
t — o (t T)t] £t —> o t-T



53

<1'}

= 1- lim Pz __<

t =

1- % J’ [1-F(x)]dx, from Theorem II.D.2.
0

For k > 1, from Theorem II.C.3,

lin  P(D, .5 = K]

t —>e
= lim P{N, - N = k}
£ o t ter
.
= lim P{N =k-1} d P{Z < 2}
t > o jl T2 teT
0
r
= j‘ P(N__, = k-11d [ 1lim P{Zt_T < 2z}, from Helly-Bray Lemma,
t —2> o
0
N 1
= ] P{NT_Z =k - 1} " 1 -7r(z)] az
0
T 1
f [Fk_l('r-z) -Fk('r -z)] m [1-7(z)] dz , from Theorem II.D.2,
0

) Sf [ [Py (r-2) -Flr-2)lz '% IT[Fk-l(sz)'Fk(T'Z)JF(Z) %

0 0



T T
= IR () -F )y - T [ (R (r-2) - F(r-2)] 7(2) az
0 0]

replacing T-2 by ¥y

T T T
[P ey - [ R(ay - [ B (r-2) F(z)az+ J"TFK(T-z)F(z)dz

0 0 0 0
u

T T T .
[P Way-2[FRG)ay+ [RGB ay
0 0 0

9

since

J”TFn(y) dy = J‘T Fn-l('T -x) F(x) dx (2.4.2)
0 0

and its proof is as follows:

Define

.
] F») ey = F (1) .

n
0

Then, since L{F'(t)} = L{f(t)} =s - L{F(t)} from (2.2.13) ,

T A
L [ B (e} = LT - - 1)) - s (2.1.3)
o) S
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A © .
where f(s) =‘f e 5% 4 F(t) -
0

And, from Theorem II.B.2,

.
L{ [ F ;{7 -x) F(x) ax}
0

L{F,_,(7) L{F(r)}

A n-1 A
(L (2()) 3[R

L (xs)) - (2.4.4)
S

Therefore, Eqs. (2.4.3) and (2.4.4) show that Eq. (2.4.2) holds.
The proof is complete.

Remark:

L{P{D(y_, 43 =K}] = LLB(N, - N__ = K]]

.
i j P{NT_Z =k -1} dLP{zt_T <z},
0

from Theorem I1I.C.3 ,

[ IT{Fk_l('r-z) -Fk('r-z)}
0

e

o [£(t-riz) + > Ib-Tf(t-¢+z-§)an(§)}dZJ s
n=1 0

from Theorem II.C.2,
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t

t ©
4 [ (F_(t=x) -F(t-x)} dF(x) + zl f
n=

K =T{Fk-1(t'z)
ter 0 0

- F (t-x)} aF(t-7+2-8)) 4F_(§)] ,
replacing t-T1+2z by x,

t-1 t-g

t ©
LL [ (B (t=x) -F(e=x)}aFf(x) + = [ (] {F_,(t-5-y)
t-1 =t 0 t-g-1

- Fy(t-8-y) - F (t-€-y)1 aF(y)) a F ()]

replacing t-rt+z-§ by ¥y,

o) J"T eV R (v)ay - j’T e™¥ F, (v)ay}
0 0

© A n
+ G’(TJ X) z (f(s)) P)
n=1

using Theorem II.B.2 and Corollary II-B.1l,

where

A ©
2(s) = ‘f e-StdF("C) s

0

-~

oSy TSy 2 Be) [ S
< &(rys) = [ e~ F . (Way -] e F@y)ay + £(s) [ e B _,(¥)dy

0 0 0

- /f\‘(S) IT e F (v)dy
q 0
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A
=2(s) { [V R _(Vay - [ Y R (¥)ay} + 6(r,s) )
o) 0 1 - £(s)
Since . lim 3 P{D(t~7,tj =X} = . lim o s+ L [P{D(t-q—,k] = k1] , the

same result achieved in Theorem II.D.3 can be obtained.

In consequence, we can use the result of Theorem II.D.3 to prove
the well-known Blackwell's Renewal Theorem, which will be counted as
another important example of the Leplace Transform Convolution Theorem

applications.

Theorem II.D.4t: If the inter-arrival time X is not a2 lattice random

variable and has finite mean u , then

lim E{D,, -} = 1lim E{N, -N }
£ - (t-7,t] £ . Ot t-

lim  [m(t) - m(t -+)]
t >

5 for every >0 .

T4

Proof:
Using the i‘esult of Theorem II.D.3,

@

lim E{D } = 1lim EZ k. PD = k}
£y o (BeT,t] £ > o kO (t-1,t]
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=°z°k-[1im P{D k}

k=1 t —>o

s ]
T T T
([ FoWay-2 [ Py + [ Fy(yday} +2f j“TFl(y)dy
0 0 0 0

(t-7,t] =

-2 J“TF2<y)dy + [ TF3(y)c1y} + 3§ ITFz(y)dy-z J"TF3(y)dy+ jTFA(y)dy}
0 0 0 0] 0

|
T |

T T T
+{ [ R(y)ay - 2 [ B (v)ay + [ Fo(v)ayd + ...
0 0 0

1 T
= 7] Fpey =
0

-~
]

e since Fb(y) =1 for y>0.

Finally, Theorems II.C.t, II.D.1 and II.D.3 are put together to

give the limiting distribution of the joint distribution of IP%_~ and

D(t'T:t] )

Theorem II.D.5: Under the assumptions made in Theorem II.C.1,

H(j, k) = 1lim P{IP%_T =r+j, D(t-T,t] = k}

~
i

[ E L Way -2 [ ey + [ B, (v)ay

) 0 0
=§' 3

ol

(i:j = l) 2y «oey Q) 2
for k=1,2, ...
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.
- %-{l-%f[l—F(x)]dx}, for k=0 .
0

E. Cost Function Formulation for the <Q, r> Model with

Backorders and Constant Resupply lead Time

First of 211, we need to dilscuss the nature of cost factors asso-
ciated with an inventory system operation to formulate an objective
cost function.

The costs incurred in operating an inventory system play a major
role in determining what the operating policy (model, or doctrine) should
be. There are two types of costs, constant costs and variable costs,
which influence the operating policy. Constant costs which are independ-
ent of operating doctrines (for example, clerical cost of processing
orders) need not be included in any system analysis to determine an
optimal operating model. Therefore, only those costs which vary with
operating models are necessary for purposes of computing optimal operat-
ing models. For example, transportation costs, and receiving and inspec-
Tion costs are in this category.

Hadley and Whitin (1963) have considered the following five types
of relevant costs in determining what the operating policy should be;
the costs of procuring the units stocked, the costs of carrying the
items in inventory, the costs of filling customers' orders (demands),
the costs associated with demands occurring when the system is out of
stock, and the costs of operating the data (information) processing

system.
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The important thing to note about the costs is that they need not
be the same as what would be computed from accounting records, because
of its varying with the operating doctrine and the components of stock-
out costs and carrying costs are not out of pocket costs, but instead
represent goodwill costs or opportunity costs.

Some of the costs of filling customers' orders is not depending
on the operating doctrine, but varying with the demand rate. These
are the costs of the accounting operations, the salaries of those in
the warehouse, the costs of packing, and the shipping costs, etc., which
need not be considered in the cost study. Rather, the costs arising
from the special action required in the case of a customer's demand
when the system is out of stock will depend on the operating doctrine,
since the fraction of the out-of-stock time in the system will depend
on the operating doctrine.

Therefore, the procurement, carrying, and stockout costs, and the
cost of operating the information processing system will be considered
in this study.

In consideration of the time period over which the system cost is
to be computed, the long-run expected average annual cost £ will be
formulated to serve as the objective function and its minimization over
the long period of time will be the criterion to determine the operating
doctrine, since it may be more convenient rather than minimizing the
present worth of all future costs. Given that c(t) be the total cost
incurred for a time period of length t years, { is defined as

follows:
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In the real world, demands can almost never be predicted with
certainty; instead they had better be described in probabilistic terms.
Realistic inventory models must account for such uncertainty in demand.
For example, the mean razte of demand mey change with time. Furthermore,
the demand rate change may appear in a cyclic fashion.

For this study, the expected values of all relevant random variables
will be accounted for to form the function £ . Now, we start making
assumptions on relevant costs.

The procurement cost is composed of a fixed ordering costs $A ,
which is approximately proportional to the number of orders placed, and
of a variable cost $C per unit associated with transportation costs,
part of the receiving costs, and part of the inspection costs. Moreover,
the unit cost $C will be assumed independent of the quantity ordered.

For the inventory carrying (holding) costs, the instantaneous rate
at which inventory carrying cosis are incurred is proportional to the
investment in inventory at that point in time. The constant of the
proportionality or just the carrying charge, denoted by "I", will be
used to estimate the carrying costs. "I" has the dimension of "cost per
unit time per monetary unit invested in inventory” (for example, dollars
per year per dollar of inventory investment). Therefore, the instantane-
ous rate of incurring the carrying charges in the units of dollars per

year is IC-x , where C 1is the unit cost of each item in dollars and
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X 1is the on-hand inventory level. As a matter of fact, the inventory
carrying charge "I" is the sum of the carrying charges arising from
opportunity costs, pilfersge and breakage, insurance costs, taxes, ete.
The opportunity cost is not a direct out-of-pocket cost, but incurred
by having capital tied up in inventory rather than having it invested
elsewhere. Therefore, the opportunity cost is equal to the largest rate
of return which the system could obtain from alternative investments.
For the stockout costs, there are two cases such as backorder costs
and lost-sales costs incurred by having demands occur when the system
is out of stock. The backorder costs are composed of the cost of attempt-
ing to find out when the customer's oraer can be filled and giving him
this information, the cost of keeping the system idle for lack of parts,
and the factor of customers' goodwill loss. When units are demanded one
at a time, a backorder cost will in gereral be composed of a fixed cost
per unit backordered and a varying cost in proportion to the length of
time for which the unit remains backordered. Therefore, the cost of
each unit backordered can be estimated by B(t) = B + % - t a function
of the time t for which the backorder remzained on the books, where B
denotes the fixed cost per unit backordered and % represents the vary-
ing cost in proportion to the length of time. Denoting "units times
years” by "unit years,” % has the dimension of dollars per unit year
of shortage in the case of which we want the cost for a year to come
out in dollars.

For the lost sale costs, demands are lost if they occur when the

system is out of stock, and hence there is nothing which corresponds to
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the length of time for which a unit remains backordered. However, the
somewhat intangible factors such as goodwill loss have to be accounted
for in addition to the profit lost on the unit in not making the sale.
The lost sale costs won't be considered in this work.

The costs of operating the information processing system may include
such things as the cost associated with having a computer continuously
update the inventory records, or the cost of making an actual inventory
count, or the cost of making demand predictions. Under the deterministic
models for which the rate of demand for units stocked by the system is
assumed to be known with certainty and be constant over time, it is
possible to determine for zall future times precisely what the state of
the system will be if the state is known at a given time and if the
quantity to be ordered and the reorder point are specified. However,
under the assumption of random demend, it is no longer possible to make
such predictions with certainty, since the times of occurrence of the
demends and also the number of units demanded per demand are random.
Therefore, a so-called transactions-reporting system is sometimes eguipped
to record and report each transaction (demand, placement of order,
receipt of shipment, etc.) as it occurs. It is known that the <Q, r>
model can be optimal if the transactions-reporting system is used and
units are demanded one at a2 time. By the way, this processing system
may cost inventory systems too much. Thus, an alternative has been
suggested which has the state of the inventory system examined only at

discrete, usually equally spaced points in time.
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Recall the assumption made in Chapter I that demands occurring
when the system is out of stock are backordered, units are demanded
one at a time, and procurement lead time is constant, T -

The inventory position {IPt5 t >0} and the net inventory
{NISt; t > 01 were defined early to be, respectively, the amount on
hand {OH ; t >0} plus on order minus backorders {Bot; t >0} and
the amount on hand minus backorders.

Recall also that under the <Q, r> model a quantity Q is ordered
each time the appropriate inventory level (the on-hand inventory, the
net inventory, the on-hand plus on-order imventory, or the inventory
position) reaches the reorder point r . Therefore, the final objective
is to determine the optimal values of Q and r which minimizes the
corresponding objective cost function £(Q, r) -

It is important to note that the on-hand inventory or net inventory
can not be used to rigorously define r , since a possible heavy demand
during some cycle and a huge number of backorders might cause the on-
hand inventory never to get back up to r again, and hence another
order would never be placed. The inventory position is generally used
as a sultable level for defining the reorder point without getting in-
volved with the above difficulties.

When we define the reorder point r in terms of the inventory
position, the iInventory position becomes r+Q immediately after an
order is placed. Thus, the inventory position must have one of the

vaelues r+1, ..., r+Q . It is never in a state r , because as soon

as a demand occurs which reduces the inventory positicn to the state r
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an order is placed bringing the state to r+Q . By the way, the speci-
fication of the inventory position does not directly tell us anything
about the on-hand inventory or the net inventory. Therefore, we need
to specifly the on-hand inventory and the net inventory by use of the
inventory position. Iet {N.; t > 0} denote the cumulative counting
of demand occurrences by time t . Then {Nt} is a discrete~-velued
continuous-parameter stochastic process (or a renewal process) with
simple paths increasing in unit steps. Note that everything on order
2t time t -7 will have arrived in the system by time ¢ and nothing
not on order at time t -t can have arrived in the system by time t .

By definition, the next relations follow:

N
= - > = -
NIs, IPt_T D(t-'r,t] for t > 1 >0, where D(t-'r,t] N, N*b-'r
= OHt - }30t
and hence >
NIS £ = CH,, 1f NIS,L >0
v [V
= BOt , otherwise J
(2.5.1)

From the relation of Eq. (2.5.1), if the joint distribution of
{I?t-q—} and {D('t-'r,t] for t >71 >0 is determined, then the distri-

bution of {NISt} can be immediately computed.
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With the result of the joint long-run limit distribution of
{rp, } and {D } in Theorem II.D.5, we are about to find the

-T (t"'l':t]
long-run limit distribution of {NISt} which can be used to determine
the probability PoS that the system is out of stock, the long-run
expected on-hand inventory E[OH]Q and the long-run expected backorders
E[BO]Q. This effort will then lead to the formulation of a long-run
expected average annual cost function under the assumptions made early
on the cost factors, where the minimization of the function is the crite-
rion to determine the optimum Q and r .

It was proved in Theorem II.C.4t that {IP_ } and {D 1 for
t-T (t-T,t]

t > 7 >0 are mutually independent of each other. We want to introduce

the next expression for some later usages; for j =1,2, ..., Q ,

P{IPt-T

) .t ) e,
r+j, D(t-"r,t] =J -S} - P{Ipt_,.r = I‘+J} P{D(t-"r,'t] =Jd S}

= PfT = v+ 33 2D = 3 - i i .5.
il /S - Twud =1 (t-'r,t:] J S}: it J Z S (2 ) 2)
=0 R otherwise .
Referring to Eg. (2.5.1),
Q +
P{NIS, =r+s} = Z P{IR,__=r+j, D(gr,4] = i-st
J:
for S=Q,Q-1,Q-2, «.., 0, =1, =2, ...
Q

= = P{IR,__=r+j) P{D(t_T,t] - 5-517 . (2.5.3)

J=+



From Eq. (2.5.1) and Eq. (2.5.3),

P{OH, = x}

Therefore, the

E[OH],

= P{NISt =x}, for x=0,1,2, ...

z +
B -?1 PRy = 7% Dy gy =T FI-%

J_

Q ) . + )
= J‘El P{IP.t_,r = Z"T‘J} P{D(t-’r,t] = I‘+J "'X} * (2'5' )

expected on-hand inventory at time t 1is

(o]

Z x - P{OH, = x}
x=0

r+Q

L x - P{OH_ = x}
x=0

rQ Q

+
£ x-+-Z P{IP =r+3j} P{D =r+j=-x}
%20 3e1 teT (t-7,t]

Q { T+ ; +
Z P{IP,__=r+j} £ x - PD =r+J-x}
521 T %20 (t-7,t]

z % 1T }
X P{TIP =r+j} Z x - P{D =r+j-x
5= T <=0 (t=7,t]

Q r+j

Z PIP =r+jt Z (r+j-n) PD =n
J’=l { t-T TJ} n=0( J ) { ('t-T,t] } >

where n=r + J =-x
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Q . . r+j T+ =n}]:
= EET o (@) T FD gyl s B P
(2.5.5)

where D( T is an arbitrarily distributed random
2
varieble and its asymptotic limit distribution is shown

in Theorem II.D.3.

The long-run expected number of unit years of on-hand inventory (storage)

is
Q
lim E[OH, ] = lim z P{Ip,__=r1+j}
t—>o t—=>oe j=1 T
r+j T+
L ee3) BORD gy e} - Zn R g = o]
Q
= £ [ 1lim P{IPt = r+31]
=l t > e T
r+j r+j
. 2 s - - . =
£ l_liw [(x+3) n§0 P{D(t-'r,t] n} n=On P{D(t-'r,t] n}]
S L) 20 { 1)
= £ . = r‘."j = lim P{D =1
=1 < n=0t —=> o (t-1,t]
r+j ( ) ( 6)
- 2 n.( lim P =n})] , 2.3-
n=0 e ) (t-7,t]

by Theorem II.D.l, where lim P{D( ter,t] = n} can
t > o ™
be evaluated by use of Theorem II.D.3.
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Thus, the long-run expected averege number of unit years of on-hand

inventory incurred per year, denoted by E[OH]Q , Tollows:

T

P

J E [OHt] at

lim
t —>r o=

E{0H]y -

: 1im E[OH] - (2.5.7)
t —>»

Likewise, from Eq. (2.5.1) and Eq. (2.5.3),

P{Bot = x} = P{NIS, = -x} , for x=1,2, ...,
2
= .Z P{IP‘c-'r =r+j, D(t-*.-,t] = r+j+x}
J=1
Q
= J_i P{Ip,__ =r+]} P{D(t_,r,t] =r+j+x}.(2.5.8)

Therefore, the expected number of backorders on the books at any time ¢

or the expected number of unit years of shortage at any time Tt is

(-]
E[B0,] = = x - P{BO, = x]
x=1
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© Q
£ x- & P{IP,__=r+3} PD =r+j+x}
x=1 j:l T-1 (t-T’t]
Q o
£ P{IP =r+3j} £ x - P{D om = r+3+x}
3= t-T x=1 (t-"r, u]
Q ©
T P{p, =r+3j} £ (n-r-j) P{D =n} ,
J=1 teT n=r+j+1 { (t-T’tJ
where n=r + J + x
: 5 I = B )
Z P{IP =r+J X n-P{d =n
j= t-T n=r+j+1 (t=,t]
-]
- & (r+j) P{D = n}]
n=r+j+1 (t-T’t]
Q ) r+j
jEJ_P{IPt'T =r +J}[E[D(t-'r,t]] —nion . P{D(t-'r,t] = n}
- £ (r+3) P{D = n}]
n=r+j+1 (t-7,t]
S 2 JED,_ o] - Eon- P ;
T P{IP, =r+3}(E[D,, _ -Zn- _ =n
j=1 t-7 (t T,t] n=0 (t T:t]
r+j
- (x+3)(2 - Z P{Dy_ = n})]
n=o (t TJt]
Q r+j
ZP =r+j - ] 1-n)?P = .
& (TP =7 +3MED (. 9] (r+a)+n=0( n)P{D(y_. 7701

(2.5.9)
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The long-run expected number of unit years of backorders (shortage) is

Q
lim E[BO.] = 1i Z P{IF,_ =r+J} [EDD
t —]im B t] t ;{l;w J=1 { T : J} - (t-T’t]]
- r+j
- (r +3) + nio (l-n) P{D(t-T,t] = n}]
Q : : ; 7
i jil [‘t 1—+lm © P{IPt-T =r+‘j} + -J-—liea [E[D(t-’r’t]-‘
- r+j
- (r-i-a) + nio (l-n) P{D(t--r,t] = n}]
Q ) i .
= jil [t 1_12 ) P{Ip,__=7+3}]" [t l_lﬁ ) ELD(gmr, 1]
- v r+j 3
- (r+3) + nio (1-n) (t }_zﬁw P{D(t-'r,t] = n})]
- g . .:.L.[ I (r+3)+ rgj(l-n)( lim P{D =n})]
j=1 @ n=0 §>o  (07T5E] ’

(2.5.10)

by Theorem II.D.1 and Theorem II.D.kt, and also

lim P{D

= n} can be evaluated by Theorem II.D.3.
t—2>c= ,t]

(t-1

Thus, the long-run expected average number of unit years of back-

orders incurred per year, denoted by E[OB]Q , is



T2

-
j E[BO, Jat

E[B0], = lin

t —>o

lim E[BO,] . (2-5.11)
t —>»

The long-run expected aversge value of the random variable, say
ABOt , representing the number of backorders incurred between time t -7
and t can be approximately computed by multiplying the mean rate of
demand (or demand intensity) X by the out-of-stock probebility P__ -
Denote by Pos(t) the probability that the system is out of stock at

time t . Then, the 1limit out-of-stock probability Pos follows:

Pos = lim Pos(t)
t —>» o

(-]
= lim Z P{BO, = x}
t —> o x=1

© Q
= 1lim = Z P{
t —>» o x=1j=1

__=r+j} P{D

t-7 ,t] =r+j+x},

(t-7

from Eq. (2.5.8)

@
P{IP,__=r+j} % P{D,, _ = n} ,
Tt nerag+1 (t-1,t]

N Mo

t > j=1

where n=r + J + X
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Q r+j
= lim g P{rp, =r+j} (1~ Z PD = n}]
t > e jo1 t-T n=0 (t-1,t]
S0 { 101 £ { 1]
= Z lim P{IP =r+js]l 1 - Z lim P{D =n
j=l t —> o e 10 t —> o (E7T5E]
Q r+j
=z gl1-2 ( Mn P . 8] = n})] , (2.5.12)
J=1 n=0 t —>» o '

by Theorem II.D.1.

The mean rate of demand ) is formally defined as follows:

E[D

AeTd .
X = tlimo (‘:;t.m:j ) (2.5.13)
At >

Hence, the long-~run expected average number of backorders incurred per

year, denoted by E[ABO]Q s is

B[ABO]Q = lim E[ABO,t]
t —>o

= lim ) - B (%)

Tt —>
=)‘ i POS
L2l ¢ 1, (2.5.18)
=x-+> £ [1- z( lim 2D =n})] 2.5.1
° s 10 t —> o  (ETsE] ’

by Eg. (2.5.12).
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Moreover, since the mean rate of demand is )\ units per year and each
order quantity is Q , the number of orders placed per year must average
to A/Q -

Al]l the terms meeded for the long-run expected average annual cost
expression £(Q, r) have been evaluated. With the cost parameters

discussed early in this section, it is formulated as follows;

A . . 5.
g, r) = g AtTI E[OH]Q + B E[ABO]Q + B E[BO]Q . (2.5.15)
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ITI. PERICDIC REVIEW

A. Introduction

The intention of this chepter is to combine the recent work on the
nonstationary Markov chains with the classical models of inventory
theory to derive the cost functions of an inventory system under certain
operating doctrines in the face of nonstationary Poisson demand.

It is not always desirable to have inventory systems use trans-
actions reporting review procedure, since it may be too costly. The
periodic review procedure is an alternative. When the procedure is used,
the state of the inventory system is examined only at discrete points
in time, since decisions such as whether or not to place an order are
made only at the review times and thus the decision makers do not know
anything about the state of the system at times other than the review
times.

Three operating doctrines, "Rr” doctrine, "order up to R" doctrine
and "nQ" doctrine, are commonly used for the periodic review inventory
systems. These terminologies are adapted from Hadley and Whitin (1963).
Symbolically, those doctrines are referred to, respectively, as
<R, r, T>, <R, T> and <nQ, r, T> models. Under the <R, T>
model, an order is placed at each review time if any units have been
demanded in the past period, so that the ordered quantity can vary from
one review period to the rext. According to the <R, r, T> model,

a procurement of sufficient quantity which bring the inventory levels

up to R 1is made at a review time only if the inventory position in
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the backorders case is less than or equal to r . An integral multiple
of some fumiemental quantity Q (i.e., nQ forn =1, 2, ...), in
<nQ, r, T> model, is ordered at a review time only if the inventory
position or the amount on hand plus on order at the review time is less
than or equal to r . It is stated in Hadley and Whitin (1963) that a
<R, r, T> model is usually the optimal one, if all demends occurring
when a system is out of stock are backordered. We know that <nQ, r, T>
and <R, T> models are only approximetions to the optimal <R, r, T>
model, and further, that the <R, T> model is a special case of the
<mQ, r, T> model and also of the <R, r, T> model. Therefore, once
having obtained the precise equations for the <nQ, r, T> model, we
can immediately get the exact equations for 2 <R, T> model under the
same assumptions which apply in deriving the <nQ, r, T> model. Even
if the <R, T> model is widely used in practice for periodic review
systems, the <mQ, r, T> and <R, r, T> models will be dealt with
under the assumptions made in Chapter I for this study.

Before investigating the Markov property of an inventory process
{IPT 3 I, 20 for k=0, 1, 2, ...} , where Ty = 0 , we want to define
some important terminologies. A stochastic process {N_ , 0 <t < =}

representing the number of demand occurrences by time t 1is said to

have "independent increment” if the random variables D (4 ] are
n-1’"n
independent, where D( £ £ ] = Nt - Nt for all choices of indices
n-1’"n n n-1

to <tl <...< tn. In addition, if D ( tn-fh’ tn +n] has the same distribu-

tion es D(t £ ] for h>0andn=1,2, ..., it is said that the
n-1’"n



7

process {N%} has "stationary independent increments.” Otherwise,
the process is said to have "nonstationary independent increments.”

As was pointed out earlier, in the inventory system under study
the inventory position IPTk at a review time Tk >0 (k=1,2, ...)
can be determined only by the inventory position immediztely after the
preceding review time Tk-l , and the accumulated demand during the kth
review period (Tk-l’ Tk] . Under the assumption of independent demand
events in each different period, it is reasonable to assume that the
process {IP 1; Tk >0 fork = O, 1,2, ...} satisfies the Markov prop-
erty that the&future system development is completely determined by the

present state and is independent of the whole past history.

Under the assumption of a Poisson demand process, the corresponding

stationary Markov chain {IPT 5k=0,21, 2, ...} with a constant re-
k
view interval T , where T = Tk+1 - Tk , and finite state spaces

S ={r+l, r+2, ..., r+Q} for the <nQ, r, T> model and S = {r+1,
r+2, ..., R} for the <R, r, T> model, has been studied by Hadley
and Whitin (1963). The stationary Markov chain means that the condi-
tional probablility of the inventory position being r+J at the next
review time, given the inventory position =r+1 2at one review time,
does not depend on time parameter Tk , that is, for n >0

=r+i}

wr =TI Pryegye = 711 = Py = T3 L TP qim)e

Pij (say} °
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They did construct the corresponding stationary finite transition matrix
of {Pij], (i,5 € S) , for the <R, r, T> model, but in view of compu-
tational difficulty, the matrix was not directly used to find the long-
run distribution (or the inveriant probability) of the Markov chain

{IPo} - It has been pointed out by Mettanant (1977) that it is not
hard to solve for the long-run distribution. However, they gave the
very complicated closed form of solutions for the long-run limit distri-
butions of {IPkT} . Therefore, the issue is taken up below in the
general and simpler setting of the long-run limit distribution from
finite transition matrices under the <R, r, T> model.

In this chapter, we shall investigate the implicatlions for the non-
stationary inventory position process {IPék; Tk >0 for k=0, 1,
2, ...} , and hence the full inventory system, of a demand process which
is a generai nonhomogeneous Poisson process, with intensity function
A(t) replacing the usual constant intensity ) , whence the concept of
the weak and strong ergodicities of nonstationary Markov chains will
be applied to determine the relevant limit distribution of the inventory
position {IPTk} corresponding to the <nQ, r, T> and <R, r, T>
models. OUnce such a limit distribution is determined, the annusl inven-
tory system operation cost evaluation seems straightforward. The signifi-
cance of this approach is that this analysis treats e more realistic
stochastic demand process. It should be noted in addition that it will
be assumed that the lead time 1 1is constant.

The mean value function m(t) = E{Né} of a nonstationery Poisson

process 1s always assumed to be continuous and also usuelly differen-
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tieble, with derivative A(t) = d m(t)/dt , where )(t) is called the
intensity function. It is e useful fact that the Poisson differential
assumptions, with mean rate (or intemsity) X replaced by A(t) ,

yield Poisson demend in time interval (o, t] . It will further be
shown below that the intensity function )(t) of the nonstationary
Poisson process yields the perameters of the nonstationary Markov chain
process for inventory positions, under the <mnQ, r, T> and <R, r, T>
models, leading to the relevant limit distributions.

This chapter will also include an approach to both the <nQ, r, T>
and the <R, r, T< models which takes into account possible cyclic
behavior ( for example, seasonel trend) of demsnd. This case is modeled
by a cyclic nonstationary Markov chain, for which Cesaro ergodicity per-
tains. Bowerman, David and Isaacson (1977) have verified sufficient
conditions for the strong ergodicity of a nonstationary Markov chain in
which the transition matrices repeat themselves in a cyclic fashion.
This weaker form of ergodicity is still sufficient for the computation
of long-run expected average cost.

This section will be followed by Section B for a discussion of
Markov Chain Theory, Section C for the long-run limit distribution
computation of [IPTk} and Section D for the derivation of long-run
expected average annual inventory system operation cost function. There-
after, only the thing to do is to determine the optimel values of Q, I,
T and R which minimizes the relevant cost function corresponding to

each opereting model. This job can normelly be done on e digital com-

puter.
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B. Long-Run Behavior of Finite

Nonstationary Markov Chains

Some discrete-pareameter stochastic processes {Xt; t=0,1, 2, ...}
have the outcome functions {X%(m)} with w € Q (sample space) which
range over the elements of a countable state space S = {1, 2, 3, ..-}-.
A finite discrete-parameter stochastic process is a stochastic process
{X.3 t =0, 1,2, ...} for which 211 the outcome functions {X%(w);

w € 0} range over the elements of a finite state space S = {l, 2, «-,
N} . There are some discrete-parameter stochastic processes satisfying
the Markov Chain property, which is the basis for work in this study.

We shall begin this section with given the formal definition of Markov

Chain.

Definition III.B.1l. A stochastic process {X%; t=0,1,2, ...} with

a2 finite or countzble state space S = {1, 2, ....} is said to be &
Merkov chain if for all states io, il, cesy it end for t > 1 ;

i

{ = i = i = 3 oo = 1 = = i -
PRy = 11Xy = 59 Xy =195 -ees Xy = 4 0} = P{X, = 1 [ X 5 -4 53

(3.2-1)

A finite Markov chain is a stochastic process {Xt; t=0,1, 2,...}

with a finite state space S = {1, 2, ..., N} satisfying the relation of

Ea. (3.2.1). Eg. (3.2.1) meens that the transition of a Markov chain

from time t-1 to t is determined only by the conditional probebility

= i { = i -
Py = ig 1 Xy = ig 51
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Pt-l,t
ij
tion probability from state 1 to state j on the tth step, the

If we denote by = P{X, =] 1X‘t-l = i} the one-step transi-

one-step transition matrix of a Markov chain with state space S =

{1, 2, ...} 1is defined for +t+ >1 to be;

-1t t-1,% t-1,t R
o Pip  eeeees L
$-1,% £-1,% £-1,%
Poq P R 1
Pt'l’t = : : ceesee .....
$-1,% £-1,t £-1,t
pil Pi2 ...... ‘ij .....
B : : J
where pi."-.l’t >0 ¥ ieS, ¥ je$s, and
1J -
 opte1, ¥oies.
jes J

Definition III.B.2. If P?:l’t is independent of t , then the Markov
&

dJ
chain is said to possess stationary transition probabilities and is
called a stationmary (or homogeneous) Markov chain. If p;;l’t is de-

pendent upon t , then the Markov chain is called & nonstationary (or

nonhomogeneous) Markov chain.

Since the transition matrix B° 1'% of & stationary Markov chain
has components {p‘ggl’ t} satisfying
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t-l,t - s
pij P{X-t =d Ix‘b-l - l}

= P{X

g =9 | K14y =1} for wu>0, ¥ ieS and

¥ jJesS,

1,t

we write P as P for t2>1.

Example III.B.1l: Let {X’c; t=0,1,2, ...} be a Markov chain having

probability transition matrix from time t-1 to time t of; for

t>1,
- -
0.8 - 0.1/¢ 0.1 + 0.2/t 0.1 - 0.1/t
pebst o 0.6 - 0.1/ 0.3 - 0.1/t 0.1 + 0.2/t )
0.7 - 0.1/t 0 0.3 - 0.1/t _J

Then {X.; t=0, 1,2, ...} is a nonstationary Markov chain.

Theorem IIT.B.1. (Chapman-Kolmogorov Iientity): For all nonnegative

integers m and n and state space S = {1, 2, ...}

It we denote by P(n) the matrix of n-step transition probabili-

ties Prilj

tnat plte) _ p(m) | p(2)

= P{Xn =3l X = i} , then Chapman-Kolmogorov Identity asserts

, which is reduced to o(n) _ p(=) | p(z-m)
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with the replacement of (m+¢) by n for eny m<mn . Hence,

P<n) =P - P(n-l) =P - (P - P(n'g)) e =P . In general,

(m,m+n) _ - . . . .\th (m,m+n) _
Py 5 = P{Xm+n =3 le = i} is the (i,j) entry of P =
+ 1.m+ - +
pomtl | ptl.mi? | gmRelmn o0 S 1 L This leads to the

following theorem.

Theorem III.B.2: For t>n>m>0.

@) o 5 Pgi,n) . plmst)
+ kes K]

let f(o) = (f‘_.(Lo), féo), cen, flgo)) be a starting vector possessing

5 (0 (
the property of & fi =1 and ¢

i=1 1
£(0)
1

0)

0) >0 ¥ 1, where fg =

P{Xo =i} . is the probebility distribution that a process

{Xt; t=0,1,2, ...} starts at state i . If a sequence of trensition

~(0)

n-l,n < .
7, and £ are given, the proba-

(==}
metrices {P_} , where P =P
N n=1 n
bilities of various outcomes of a finite nonstationary Markov chain
{Xt; t=0,1, 2, ...} with state space S = {1, 2, ..., N} can be

determined as follows; for J e S

N
1) P{x; =3} = .lP{Xo=i}P{xl=a'lxo=i}
1=
N
= fgo) . pgg’l) . (.2.2)

i=1



N
ii) P{X2 =3} = £ 'P{Xl = k} P{x2 =j!xl = k}
k=
N( N
= Z Z PX = i PX = k X =1
e %o = 3)
PiX, = j | %, = ¥}
N XN
=3 = fgo) pgg’l) p}({g.,z) s (3.2.3)

k=1 i=1

and so on.

Therefore, the distribution of where the process is situated after n

steps can be found from f(n) = f<o) . Pl - P2 Pn . Since

PXg = 1gy Xy = iy, +-+p X = 1]

= P{Xx, = i;} PX; = illXo = 15} P{X, = ielxo =iy, X; = i3 ...

P{X_ = lano =i X =i, eee, X o= in_l}

m-1,m
D

)

n
i 1 i i
0 m=1 m-lnm

.

In some nonstationary Markov chains the vector f(n) converges to
(0)

a fixed vector w which is independent of the starting vector £ .

The limit vector m 1is called the long-run distribution or the invariant

provability distribution.
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et £(®2) 2005 veed _.p . glmm)

m+l Pm+2 n-1 n’ may con=

verge to a fixed vector . for all m so that no matter when the
1im () g

(O) n—>»ow
independently of T . This convergence shows that the effect of

process starts, whether at time zero or time n-1,

f(o) is lost after a long time, so that it is often referred to as loss
of memory with convergence. On the other hand, some vector f(n) mey
not always be possible to have the behavior of both convergence and
loss of memory together. For example, the probability of being in a
particular state in n steps mey be eventually independent of the ini-
tial state, but dependent on time n . This kind of behavior is re-
ferred to as loss of memory without convergence.

The necessary and sufficient conditions for these two different
long-run behaviors of nonstationary Markov chains can be formally
established using the ergodic coefficient :x(Pn) for n >1 which has
been defined by Dobrushin (1956). The applications of the ergodic
coefficient to stationary Markov cheins are rather simple corollaries

of results that relate to nonstationary Markov chains.

Definition III.B.3:

a) A matrix A whose (i,j)th elemrent is denoted by aij is

called e stochastic metrix if aij >0, ¥1 end ¥j end I &, = 1,
Jes
¥i.
b) A matrix A is called & doubly stochastic matrix if aij >0,

¥i and ¥ 3, Zai.=l ¥ j and Z‘.ai.=l,Vi-
ies jes



¢) A matrix A is called a primitive metrix if 245 >0 and

ags >0 for m>1, ¥i and ¥ j .

Therefore, if the transition matrix P of a Markov chain with
S=1{1,2, ..., N} 1is primitive, then after sufficient lapse of time
the chain can stay in any state of the space, no matter which of the
states 1t started in.

The transition probability matrices of inventory position process

{IPT 3 T, 20 for k=0, 1, 2, ...} under <nQ, r, T> and <R, r,T>
k

operating models form, respectively, a finite positive doubly stochastic
matrix and a nonnegative stochastic matrix with two positive columns

and two positive rows. Therefore, finite primitive stochastic matrices
will be mainly dealt with throughout this chapter.

let's define the norm of a vector f = (fl, fg, ...) and the norm

of a square matrix A = {aij} by, respectively, [f]| = £ [£.]| and
ieS
lall = sup I ]ai.] , where S ={1,2, ...} . Then, we will give
ieS jes M

the definition of another coefficient &(P) , called the §-coefficient

of & stochastic matrix P , which has been used more frequently and
conveniently than o(P) .

Definition III.B.Lk: If P is a stochastic matrix whose (i,j)th

element is pij , then the delta coefficient of P 1is defined by

§(P) = 1 - oP)



i,j keS
= (3)sw 2 |p, -5l
2745 kes T K

+
where (pik - pjk) = max(0, Pij - P,jk) and 0<5§(P)<1.

The following theorem which has been proved by Paz (1970) is just

stated without proof.

Theorem III.B.3: If A and B are matrices such that A+B and AB

are well-defined. then

e) lla+3Bl < [laf + [IB]

N

v) Jla- B < llaf + fzl

c) 8(aB) < s(a) 8(3)

a) |xal = |x| |ja]] , where k is a constant.

We now introduce an important lemma which can be used to prove the
strong ergodicity of a nonstationary Markov chain. Its proof can be

found in Isaacson and Madsen (1976) (see also Paz (1971))-

Lemma III.B.l: If P bDe a stochastic matrix and R be a matrix of the

same dimension as P such that Z rij =0, ¥j and R <=, then
JesS

lr-2 < [&l - s -
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We will also state without proof the next theorem in Isaacson and
Madsen (1976) in which the ergodic coefficient can be used to determine
the weak ergodicity of a nonstationary Markov chain and the strongly
ergodic behavior will be related to the transition matrices rather

than the starting vectors.

Theorem III.B.L: Iet {X‘t; t=0,1, 2, ...} be a Markov chain whose

trensition matrix from time t-1 to time t is BC LT

for t>1.

a) The chain is called weakly ergodic if and only if for all

m>0 - 1lim 5(P(m’n))=o.
n—>oc

b) The chain is called strongly ergodic if and only if there exists
a stochastic matrix G with constant rows (or a constant stochastic

metrix) such that for all m >0 ,

1a @) el - 0.
n—>o

This theorem indicates that weakly ergodic Markov chains have the
long-run behavior of "loss of memory without convergence” and strongly
ergodic Markov chains have the "loss of memory with convergence" be-
havior after a long time.

Mott (1957) has verified a sufficient condition for a nonstation-
ary finite Markov chain to be weakly ergodic with ct = max {";} on

JjeS

the state space S = {1, 2, ..., N} , where {cr;} denotes a least element

of the j'° colum of a trensition probsbility matrix P 0¥ .
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Corollary ITI.B.l: A nonstationary finite Markov chein is weakly

ergodic if

n
I (l-ct) —>» 0 as n—>o .
t=1

This corollary means that a nonstationary finite Markov chain is weakly

£-1,1%

ergodic if at least one column of P is uniformly bounded above

zero, that is, o >0 >0 for all t . This condition is sometimes
more conveniently used to determine the weak ergodicity for non-
stationary finite Markov chains.

Note that for finite stationary Markov chains weak ergodicity 1s
equivalent to strong ergodicity-

We will now introduce a theorem which gives sufficient condition
for a nonstationary Markov chain to be strongly ergodic. It relates
strongly ergodic behavior to a nonnegative left eigenvector correspond-
ing to the eigenvalue 1 rather than the transition matrices. The proof

appears in Madsen and Isaacson (1973).

Theorem III.B.5: Let {Xt; t=0,1,2, ...} be a weakly ergodic

Markov chain whose transition metrix from time t-1 to time t 1is

Pﬁ-l’t. If for each t > 1 there exists a row vector ﬁt such that

[=<]
APt T =1, e 2 T - of] <, then the
t=1
Markov chain is strongly ergodic and the strong long-run distribution
of the Markov chain is T where lim H ﬁt - wll =0 .

t—>o
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Perron-Frobenius' theorems stated in Gantmacher (1959) assert that
a nonnegative matrix A is primitive if and only if it has a unique
maximal eigenvalue AO in its absolute value, that is, if Xi R
i=1,2, ..., 1is some other eigenvalue of matrix A , then 1)\11 <
[xol . Moreover, >‘O is a positive, simple root of the characteristic
equation and the corresponding eigenvector is positive. It is followed

by a lemma, the proof of which appears in Issacson and Madsen (1976).

Lemma ITI.B.2: The value 1 is not only an eigenvalue of all finite

stochastic matrix P , but also it is the largest eigenvalue of P .

These lead to the following theorem. The reader is also referred

to Kemeny and Snell (1960), and Isaacson and Madsen (1976).

Theorem ITI.B.6: If a NxN stationary transition matrix P is primi-

tive, then the powers 7 for m > 1 approach a constant stochastic
matrix G such that each row of G is the unique probability vector

T o= {rrl, Moy o5 rr.N} satisfying wP =n and hence PG =GP =G .

Proof:

The proof is straightforward from lemma III.B.2 and Theorem
III.B.5.

A doubly stochastic matrix is a special type of general transition
metrices. In view of Theorem III.B.6, a unique long-run distribution
can be obtained from the transition probability matrices of inventory
position process {I:E’T 5 T, 20 for k=0, 1, 2, ...} under the

k
<mQ, r, T> model.
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- 7
Proposition ITI.B.1l: Let Pt 1% and Pt’t+* be NxN doubly
stochastic matrices. Then, P e L R P PP g

doubly stochastic matrix.

Proof:

Let agj s p:;l,t and p§§t+l e the (i,j)th components of
matrices, respectively, Aﬁ, Pt-l’t, and PO | men ab = pFLoT
. P8P iiplses that ¥ iand V3,

N
% t-1,6 _t,t+1
N N W .
el = & = p?;l’t . ngt‘l
g=1 X j=1 k=1 *
N N
R R
k= 5=1
= 1,
and
N t N N t-1,% t,t+1
Z a/. = ¥ I Dsy - D >
i=1 I i=1 k=1 K
N e Y st
k=1 i=1
= 1.

Therefore, the proof is complete.
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Corollary III.B.2: If the doubly stochastic matrix P for a stationary

finite Markov chein with N states is primitive, then the long-run

distribution is the unique uniform probability vector m = { %, -1:%,
1

s § .

Proof':

The proof is straightforward from Theorem III-B.6 since XN : =1
for 1 =1,2, ««., N and t2>1.

It has been stated in the book of Isaacson and Madsen (1976) that
weak ergodicity of nonstationary Markov chains with doubly stochastic
matrices is the necessary and sufficient condition for the strong
ergodicity. This is a simple corollary of Theorem III.B.5. However,
since it is so important claim for nonstationary Markov chains corre-
sponding to the <mQ, r, T> inventory system operating policy, we shall

present the following theorem.

Theorem III.B.7: Let {Xn} be a finite nonstationary Markov chain with

state space S = {1, 2, ..., N} . If the sequence of the corresponding
o

transition probability matrices {Pn} are all doubly stochastic,
n=1

then the chain is strongly ergodic with w = { %, -Jﬁ, Y % 1 if and

only if it is weakly ergodic.

Proof:
Define by p§® _p o P i P for m=1,2, ... Tt
1 2 3 m > 2
follows from Proposition III-B.1 thet p§®) is alsoa mxN doubly
stochastic matrix. Iet G be a finite, constant stochastic matrix

with identical row m = { %, %f’ e, %I' } . Under the assumption that
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\
the chain is weakly ergodic, we can show that P(m’ tends to G as

m —>w as follows; for m>1,

2= - o

|
T
)
g
]
o)

(3, -¢e) - (p,-¢6) -~ (B, - &)

H(Pl -G) - (P2 . 393 e B - &)l

”(Pl -G) - (P2 . P3 Pm)!\, since (Pl-G)-G =0

I

< e -¢ll - 8(2"™) from Lemma III.B.1.

Therefore, since the chain is assumed to be weakly ergodic so that
5(P(l’m)) ~—>» 0 as m—> o , its strong ergodicity is assured.

On the other hand, if we write p® _p .p .p .op -

1 2 3 m

G + Em , Where Em is a matrix with each row sum equal to zero, then
the strong ergodicity assumption implies that there exists a positive
integer M such that given ¢ >0 , for a>M HPl - B, - P3
P -Gl <e; that is, |E || <e - Therefore, letting e 1 D° the

(i,2)tB element of the metrix E_ ,
m

5(F)

5(G + Em)

N

1
(5)swp = [|(m,+e .,)-(m,+e )|
2 1,5 £=1 ig m,1g Jje m,j4



Z = | 1
= (5)sup = le .,-e .

2 i, #=1 m,14 m,34

(%) 2 e, ]+l ]
< (F)sw = {le . 1 +]e .11}

2 1,5 2-1 m,14 m,j4
< ¢ .

-

. The proof is complete.

We have so far studied on the convergence of general nonstationary
Markov chains. In the real world, however, we may often see some regu-
larly fluctuating demands (for example, seasonal fluctuation). This
case can be easily treated independently of the previous theorems.

(=~
If a demand process (N, ; T, > 0} appears in a cyclic pattern,
T, k= "x0

(-<]
then the sequence of the transition matrices {Pk} _ of the correspond-
ing inventory position process {IP, ; Tk > O}c° ; for which subse-
Tk - “k=0
quences converge even if the chain itself is not strongly ergodic, will

have a trend such that the Pk's repeat themselves in a cyclic fashion;

that is, 2nd+z = Pz for £2=1,2, ¢+e., 4d 2and n=0,1, 2, ...,

where k=nd+¢ and 4 is the number of system reviews within each

repeating cycle. Therefore, we may be able to eveluate the limit dis-
[=+] .
tributions of subsequences of {IPT 3 for 24 =1,2, ««., d.
nd+4 n=0

For example, if a demand pattern is seasonally fluctueted and so 4 =4,

then the limit distributions of subsequences of {IP, , IPy , IE; ,---1,
1 > 9

TP,

3 "'} a-n.d
T11

{ETZ) T6’ IPTlO: "’}) {IP 3J I‘PT7)
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17, , IIPT , «++} can be computed.
12
The next theorem, which has been proved by Bowerman, David and

{Pp >

Isazeson (1977), summarizes the idea of how to compute the long-run
[=~]

distribution of the cyclic nonstationary Markov chain {IPT 3T 2 0}
k k=0

[«=]
Theorem III.B.8: Iet {Pk} be a nonstationary Markov chain such

that Pnd+ =P, for £=1,2, .., 4 and n=0,1,2, ... Assume

£ £
that Rd = Pl . P2 Pd is strongly ergodic with constant matrix
4
Gd . Moreover, let GE = Gd _HlPi for £4=1,2, 3, ..., &=1 . Then,
1=

if Ry =By Pyt B+ P, Ry=PB -B -0 B P By ooy

Rd-l = Pd . Pl - P2 Pd-l , there exist finite constants C

and B (0<pB<1) such thet for n>2

a) By - ¢4l < c 8

| n-l

b) |B, - ¢l < cs for 4=1,2, «.., d°1 .

Proof:

Under the strong ergodicity assumption of Rd’ (2) follows by

Huang, Isaacson and Vinograde (1976).

The inequality (b) follows since for 4 =1, 2, ..., d-1 ,

2
n n-1
B, - el = ”(121 ;) (BT - Gyll, where Ry =P 3 P,

Fg p B oon By



n-1
= ][(Rd) z P, - Gy Elpi[]

n-1 . 2
< )™ - gy, smmee TR =1
Scsn-l, for n>2.

.« The proof is complete.

C. Limit Distribution of Inventory Position

with Nonstationary Poisson Demand

As is pointed out earlier, the long-run limit distribution of a
nonstationary Markov chain is the row vector of a constant stochastic
matrix G which is the limit matrix of nonstationary Markov matrices
P(n) in n steps as n —» o , if the chain is ergodic in the strong
sense. Therefore, before trying to find such long-run distribution of
nonstationary inventory position process {IPTk; Ty > O}:=0 , the
transition metrices of the process corresponding to the <nQ, r, T>
and <R, r, T> inventory system operating models shall be constructed
first under the assumptions made for this work in Chapter I, and then
the determination on the ergodicity of the Markov matrices will follow.

' Iet an integer-valued process {Nt 3 t >0} represent the number

of demand occurrences by time +t . The process is said to heve non-

stationary independent increments if the random variables {D( £ N ]} s
n

n-1’
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defined in Section A of this chapter, are exclusively and mutually

independent, and {Dtn-1+h’tn+h]} for h >0 does not have the same

distribution as {D 1 (n=1,2, ...). When it is assumed
(t,_1,t,]

n-1’"n
that a process {X ; t >0} is a family of exponentially distributed
demand inter-zrrival times and the corresponding counting process {Nf}
has nonstatiocnary independent increments, the process {Nf} turns out
a nonstationary Poisson process. This process can be illustrated by
use of the mean value function E{Nf} denoted by m(t) . m(t) is
always assumed to be differentiable. Let A and A(t) be, respec-

tively, the mean rate at which counts are being made (or just intensity)

and the derivative of m(t) (or the intensity function), that is,

A(t) = g =) -

If the Poisson process {N,; t > 0} does not satisfy the condition that
a(t) is linearly proportional to t with proportionality factor X ,
that is, m(t) = E{N%} = At , it is called a nonstationary Poisson proc-
ess , or a Poisson process with nonstationary increments.

Thus, we need to know a precise form of m(t) for the construction
of transition matrices mentioned above. The approximate probability
that at time t > 0 , one Poisson event occurs within time increment
At is A(t) - At . Let (0, t] be a time intervel such that there
exists a large positive integral multiplier n satisfying n-At =1t ,

so that A(L-At) - At for £=0,1, 2, ..., n-1 represents the
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approximate probebility that such an event occurs within the time inter-
val (4-At, (£+1)- At] , or at time £- At such an event occurs within
time increment At . Denote by pz(t) the probability that cne Poisson
event occurs just within the time interval (2. At, (£+1) - At] over

time range (0, t] , so that for 2 =0, 1, 2, ..., n-1,

p,(t) = [1-1(0)-at] L1-a(at)-at] --- [1-A((2-1)-at)at] [A(2-At)-at]

- [1-a((g#1)-nt)-at] -« [1-a((n-1)-at)-At].

Denote by ©(t) the probability that one Poisson event occurs anywhere
over the time range (0, t] - Then, since possible time intervals for
such event occurrences are not overlapped each other, pz(t) for all

£ are the probabilities of disjoint random events. Therefore,

. ) n-1
o(t) = 1lim z pz(t)
n—»co =0

or n-1
= lim = pz(t) .
At => 0 20

We shall show that as At —» 0 {(or n—> =) , ©(t) tends to the
Poisson distribution, fram which the mean value function m(t) is to be
identified.

Define by
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D(t) = [1-x(0)-at] [1-A(at) at] [1-x(2-at)-at] --- [1-x((n-1)-at)-At]

n-1
T [1-x(e-at)-at] .
4=0

When each p z(t) is multiplied by the relevant unit velue 1 =
[1 - a(g-at)-at] /1 - A(g-at)-at] , pz(t) is set equal to the product

of [M(&-at)-at]/[1 - A(4-At)-At] eand the common term D(t); namely,

Ix (g at)-at]
[1 - a(2-at)-at]

p,(t) = D(¢)

Therefore, letting ©(t) = lim o(t, At) ,
At 2> o

n-1

6(t, at) = Z p,(t)
2=0
n-1 Ix(2-at)-at]

= = D(t) -

2=0 [1 - A(2-at)-at]

n-1 IA(2-ac)-at]
= D(t) - =
2=0 [1 - x(£-at)-at]

Let ) = inf A(x) and X = sup A(x) for O0<x <t . Then,

n-1
D(t) - = [x(g-at)-at) [1-X- A‘b]_l < 6(t, at)
£=0 -
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n-1 _ -1
< D(t) = [Da(g-at)-at] [T -x- 48] -
£2=0
Taking limit,
n-1 -1
{ m D(t)3-{ lim = [A(gat)acd}-{ Lim [1-x-at] "}
At —=> O t —=> 0 4=0 st =0 -
< Lim e(t, at), (2)
At = O
and 1lim 6(t,A)
At > 0
n-1 _ -1
<{ lm D(¢t)} { Lim = [x(e-at)-atl}-{ Lim [1-Xx-at] 1,
At = 0 A —=>0 =0 At = O
(B)
where lim and Iim mean, respectively, lim inf and
At =0 At =0 At —=> 0
lim sup -
At =0
Since
n-1 t
lim T [D(e-at)-atl = [ a(x) ax, and
At —>0 2=0 0

Lim [1-x-m]7=1= Lim [1-%.]"", from (4) and (B),
At —=> 0 - At >0

%
Iim o(t, at) < { Lim D(£)} [ A(x) ax < lim o(t, at) .
At => 0 At =0 o At =0

Therefore,
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t
lim o(t, at) = { lim D(e)} [ A(x) ax .
At =0 At =0 0

]

Given € >0 , it is possible to choose § such that for At < § and

0<x<t, Alx)at <e and
1
e e = [l‘l(x)‘Aﬂk x)ht < e 1€ | (e’ is arbitrary),

which is true fram

1
x(x)at
[1-a(x)-at] = [(l-k(x)-AtkzxjAt ] ( — o M(x)at

b4

as At —30 .

Thus

(L) DM o 11 ()eae] < S{7EFEN) DAGRIAED

and so,
n-1
(-1-e') = A(e-at)-a6 5
2=0
< 0 [1-x(2-at)-at]
2=0
n-1
(-1+¢') = A(2-at)-at
S e 2,=0 ) (C>
. n-1
Lo _ lim D(t) = lim 0 [1 -Xx(s-At)-At
T At —>0 At = 0 2=0
£
- [ a(x)ax
0

= e s from (C) .
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e(t) = 1lim o(t, at)
At =0
t
- I X(X)d.x 't
= e © T a(x)ax

0

which shows the mean value function

%
n(t) = E{M} = [ A(x) & . (3-3.1)
0

Let {Tk; k=0,1,2, ...} be a sequence of time intervals corre-
sponding to an inventory system review periods with TO = 0 . Then, the
mean velue function m(Ik+l) , where Ik+l represents a time interval
(T, Tk+l] corresponding to a Poisson demand counting process
during the (k+1)S% review period, is

D
(Tk’Tk-r-l:j

m(Ik) E{D(Tk,Tk+l]}

E{N, - N, }
Ternn T

Tes1 Ty

J A(x)ax - [ A(x)ax, fromEq. (3.3.1) ,
0 o)

Ts1
[ axax (3-3.2)

T
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P{D(Tk’Tk+l]} = 13{1\er+:L - NTk = n}
Ts1

- A(x)é
T‘r (e Tes1 n
e E (] a(x)ax)

7
- —= . (3-3-3)
.

t will be proved in the next section that {IPTk} and {D(Tk’Tk ] 3

h>0} (k=0,1,2, ...) are mutually independent of each other.

Then, it follows from Ea. (3-3.3) that for 7 <€ < T+ AT, (L\,Tk =

Tk.;_l-Tk) and j=l) 2: "',Q >
P{IP, =r+j, D =m} =P{IP, =r+J, N, .. - = n}
T (T, Ty +E] T T *8 NTk
= P{IP, =r+3j} PN, . - N, =n}
Tk Tk-g Tk
T, +€ )
- X(X dx m
I{: ‘Lk+§ n
e -0 a(x)ax]
Ty
= P{p, =r+j} - - (3-3.4)
k n!

Since NIS =IP, -D k=0,1, 2, «...) , 1if the
e Tk+§ Tk (Tk’Tk+§] ( ) = 2 . )

asymptotic limit distribution of IF, 1is known, the asymptotic limit
“k
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distribution of I\IIST +E can be computed by the relation in Eq. (3.3.k4),
k

so that finally the expected averaege annual cost analysis can be derived.

In fact, the Markov chain theory discussed in the preceding section can

be directly epplied to solve for the asymptotic distribution of

(-4
{IP, 3 T, > 0} .
T k x=0

Using the independence assumption on demands during different re-

view periods and also in view of the fact that ({IP, } and {D(T 7 +h]’
k k' "k

h > 0} (k=0,1,2, ...) are mutually independent of each other, we
shall show that the intensity function A(t) of nonhomogeneous Poisson
demand process yields the perameters of the nonstationary Markov chain
process for inventory position under <nQ, r, T> and <R, r, T>
models. It is sufficient to show that the sequence of demands,

D(T KSR during the corresponding review period {Ik+l} directly
k?Tk+1

affects the next relations to follow:

=iy e Tp = )

(a) P{IF, X

= i |, =1, IP
Sl s . T

k+1

= P{ETk_*_l = ik'*'l] IPTk = iK} >

for i, €8 = {r+l, r+2, ..., r+Q} or S = {r+1, r+2,...,R},

¥k,
(B) P{IPTk+l= ik+ll IPTk =1} # P{IPTk+l+h = ik-!—ll IPTk+h = 4l

for h>0.
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In order to show the equality of (A), we can use the relation,

P{IP, =i ., B =1, IP, -=14i_ .} =P{IP =i .}
N 35 Kl A S A <! T,y k-l
- P{1R, =i |1IP =i .1 - P{Ip =i .]1P =i ., I, =11,
T, ORI T k-l Ty el T Rl T Tk
as follows;
PIP, =i IP, =i, I, =i .}
T, k-l TTT R TT T kA
- P{IPTk_l =il P {IPTK = 1y IPTk+l = e | IPTk_l = Lpqt
= P{IP, =i . P{D = #(3 i), D
{ T 1 Lt - F (T, 1T ] (135 L) (TyesTperp ]
= £(i, 1,q) | T T 1,3
= P{IP =i .} - PD = £(i, .,1,)3
T, 1 k-1 G Tx-1""k
- P{D = f(- ;1 )} s
(T 5Ty sq ] S 'S5

where f(ik’ ik+l) is the functional measure for demands during the

(k«}-l)St period which get IPT equal to ik+l given IPT = ik’ and
k+1 k

P(IR, =i | IR, )

T k-1

X = 1 g1 =PD(q

-1 Ticd
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= f(ik-l’ ik)} p)

- B0,

k-l’Tk]

whence

P{IPTK+1= e Py T e Tp T 4l

K’ k+1]
= P{IP =i | =1} .
Tsl T+l Ty T
Similarly, P{IP =i |12, =i, IP =i ., IP =i .}
Tay LT T Tmo o T el Mmoo T k-2

= P{IP =i - 1IP, =41} , and so on.
Tysy BT TR

For the relation of (B), without loss of generality, we comsider
the case, 1k 2 lk+l , in which the demand D(Tk’Tk+1] = lk - lk+l is

needed for the transition of inventory position of going from state ik

to state ik&l . Then

I T e I I R e TR e ™
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= P{D =i -1 ..}
(TpoTpq] kT kel
T
- A(x)ax . s
T£ Tier1 S
e (T A(x)ax)
- —— ,
(3 - lk-i—l)’
from Eq. (3.3.3) -
Likewise,
P{IP =i . |IP =i} ="PD =i - i .}
Toqth T R TT Tk (T, #0,T o *h] T Tk T Tkl
PTk+l+h
- A (x)ax . s
Ti+h T *B e b
e - (] A(x)ax)
i T, *h
(1 = 2y

However, since {NT } is assumed a Poisson process with nonstationary
k
independent increments, )M(t) is not linearly proportional to t ,

with proportionality factor X . Therefore,

Tes1 T ™
[ axax £ f A(x)ax -
T T +h

k k
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Hence, (A) and (B) hold, so that the process {IPT 3 T, 20 for k=
k
0, 1, 2, ...} is & nonstationary Markov chain.
We shall first compute the transition probabilities of the non-

-~
stationary finite Markov chain {IPTk; Ty, 2 O}k=0 (TO = 0) with the

finite state space S§' = {r+1, r+2, ..., r+Q} or S =1{1, 2, ..., Q}
for the <nQ, r, T> inventory system operating model.

Recall that under the <nQ, r, T> model, an order is placed at
a review time T, (k =0, 1, 2, ...) if and only if the inventory

k
<r , then a quantity nQ (n=1, 2, 3, ...) is ordered, where n is

position {IPT 1} of the system is less than or equal to r . If II:T
k

chosen such that r < P, + nQ <r+Q . Therefore, immediately after a
k
review, the inventory position will be in one of the @ states r+1,

rT+2, «.., Q .
Denote by Py 13 the transition probability of going from state i
2

to state J in the (k+l)St step (or during the (k+l)St review period

(Tk’ Tk-i-l]) given that the process was in state 1 at time Tk’
namely
P, .. =P{IP, =r+j|IP, =r+i} for k=0,1, 2, ...,
k,ij Tyt Tk

and 211 i,j ¢ S -

If j <i, this transition probebility exists only when {£-Q + (i-j)}
(2 =0, 1, 2, ...) units have been demended in the interval (T, Tk-i-l]’

that is, D( 7= £-Q + (i-j) for 2ll i,j ¢ S . On the other

T Ty

hand, if J > i , the transition probability exists only when
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D = 4-Q + (i-j) (£ =1,2, ...5 211 i,j ¢ S). Otherwise, the

probability is zero.

Based on the above two different kinds of demand impact on inven-
tory positions, the corresponding transition matrix Pk , say, is con-
structed in Table III.1. For notational convenience, dencte by ¢k,i
the probabilities of {i + £-Q} units demand occurrences during the
(x+1)5% review period for £ =0, 1,2, ... and i=0,1, 2, ...,

Q-1 , namely,

Z PD,. . ~=4Q+1i} = ¢k ;0 for 1=0,1,2, ..., Q1.

{¢k i} is notified in Table IITI.1l. So, it is easy to determine that
2

the transition probability metrix is doubly stochastic. The matrix is
camposed of all positive entries. Therefore, the matrix is primitive.

©
Hence, if the nonstationary Markov chain {IP, ; T, > 0} is
T BT o

weakly ergodic, then it follows from Theorem III.B.7 that there exist

a limit constant matrix G , each row vector m of which is uniform;

that is,

= (% 1 1
- (Q,, QJ "':Q) . (3'3'5)

If we consider the chain {IP,I 1 associated with the nonsta-
¥ x=0
tionary (or nonhomogeneous) Poisson demand process {D(T T ]} , in
k2 Tk+1
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|

(PP) < Y roqen
o‘d, A, _ £-0d, 2-dd -d%
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A 07 A 07 AT A T A T b
{7= "d}d ¢ {t+d-7= "ald z {€-d¥= "ald 2 {e-o7= "a}d g {t-97= "ala 3
w0 0 o0 o w
T-dy% oy H=d‘y SR -bdf
& = & - -0 & - £-d & . c-d x& -
oo T A 0 S Ao T A T T-bes
{t1-07 = “ald {7= “ala z {(4-B7= “ala {€-9-7= “a}a z {e-vr= "dla =
{r+a}
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L £ X 07 Ao T L A, 0 wa
{t+07 = "dld X {2 ¥ = “ald {e-b7: "dld 3 {t-v7- “aja « {7 ajd 2
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which the transition probability matrices, denoted by {Pk} , repeat
themselves in a cyclic fashion such as P .., =P, (2 =12,2, «.., 43
n=0,1,2, ...), then since the P 's are primitive it can be veri-
fied in view of Theorem III.B.8, or Corollary III.B.l and Theorem
III.B.7 that the long-run limit distribution of {IPT 1, denoted by To

k
is also uniform; that is,

- = (x L L
n = ( Q,’ Q,’ MR ] Q ) . (3'3'6)

By the direct use of Theorem III.B.8, we can get the above result,
d
since {Rd = 1 Pz} is strongly ergodic and the constant matrices
£=1
{ng 2=1212,2, «.., d} are composed of all the same row vectors

7= %, %, ceey %) under the <nQ, r, T> model.
In order to apply Corollary III.B-1l, denote by c? a least element

of the jth column of Pk for j=1,2, «+., @ - Then, from Table

IIT.1
k [=-=]
o = min [Z P{D g ]=mQ+i}]
J ie¢eI m=0 K’ Tk+l
= min {¢k .} over theset I={0, 1,2, ..., Q-1},
. ,i
iel
for j=1,2, ..., Q .
Therefore,
oF = mex {UE} over J =11, 2, ..., Q}
<

Jed



[min {g_.1]
jm:u‘cr ;n:r'ir {k’l

= min {¢ .}
ier | Ed

Thus, o > min P{D =i} over I=1{0,1,2, ..., Q-1},
= (T

ieT ie? Tier1

for k=0,1,2, ...

k+1
- [ axex o
Ty k+1 1
e L[ ax)ax]
Ty
Moreover, since P{D =i} =
there exists a value o > 0 such that
¢ = min P{D = i}
iel (T Tyeas )
= min P{D _ = i},
1€l (Tnd'*'ﬁ, ,I‘nd'i'fﬁl:l

where k =nd+4 (£ =1,2, «c., d; n=0,1,2, «..),

since P_'s repeat themselves,

k
> min P{D(T o ]=i}>0 over L={1,2, ..., d}
iel 2774+
L€L
e o8 > 0o > 0.
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[~=4

Therefore, the chain {IP, ; T, > O} is weakly ergodic referring
S
to Corollary III.B.1l, and the uniformity result T follows by Theorem

III.B.7-

Under the stationary finite Markov chain assumption of the process

{IPk 3 T>0 and k=0,1, 2, ...} , where T is the constant system

review period, the next equalit& follows;

P{IP =r+j| IPkT=r+i}=P{IP. =r+lePT=r+i}

(k+1)7T

(k=21,2, ...), forall i,j eS.

When we let pi4 represent the transition probability of going from
J

state 1 to state j , Corollary III.B.2 is directly applied to get
the long-run limit distribution = ( é’-, %, cee, % } , since the tran-
sition probability matrix is primitive.

Hence, we conclude that Theorem III.B-7 is robust for the <mQ,r, T>

model, because whatever the demand distributions are they will be formed

©
into the corresponding doubly stochastic matrices for {IPT 3Ty >0}
k k=0

and thence the uniform limit distribution will be achieved.

Now, we shall study on the transition prcbabilities of the non-

[o~]
stationary finite Markov chain {IP, ; T, > 0} with the state space
R

s*¥={1, 2, ..., R-r} under the <R, r, T> model.

Recall that under the <R, r, T> model, if the inventory position
{IPT 1 at a review time T, (k =0, 1, 2, ...) is less than or equal

k
to r , then an order is placed immediately after the review time to

bring the inventory position up to R .
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*
Define by p, .. = P{IP =r+j|IP, =r+i} for all i,j e S
k,ij Tk+l Tk
and k=0, 1,2, ... Then, the positive transition probability exists

only when at least one of the following conditions is satisfied:

(2) For j<i end j#R-r, D(T n ]=i-j for all
k7 Tk+1
. . *
i, e S
(b) For i #R-r and j = R-~7, D(r .7 ]=£,+i for all
k7 Tkl

ies* and £=0,1,2, ...

= {0}

(¢) For i=jj =R-r, D
§ (T T )

{2+ (R-2)}

fer £=0,1, 2, ...

Otherwise, the transition probability is zero. The corresponding transi-
tion probability matrix Pk , composed of the components {pk,ij} , 1s
established in Table III.2. As was done for the <nQ, r, T> model,
let ek’i represent the probability of i demand occurrences during

the (k+l)St review period; or formally,

gk,i = P{D(T

T = i} for k=0,1,2, ...
k’ k+l]

{ek,i} are shown in Table III.2.
We shall investigate the transition probability mstrices {Pk}

concerning primitivity and ergodicity (existence of a long-run limit

distribution). The matrix of Table III.2 shows that column "R",

column "r+1" and the first two top rows are composed of all positive



Table TI1.. Transitlon matriy of IJI‘T 1 for <R. r. T ~ model
k

¢1T

Ir, {r+3} (3 1,2, ...,9)
IP K+l
’I‘k K R-1 R-2 r+e rtl
P(p, -0} +
- k P{Dl = 1} P{nI - 2} P[l)I = R-2-r} }’(DI = Rel-r}
R 3 P(DI : g4{R-r)} k k k K
20 'k ,
P "o -9 =% * Opepur ~ OR-1-r
0 ",y Mker
T PD; - 24(R-1-r)}  P{D; = 0} P{D. = 1} RN P(D; = R-3-r] P{D; = R-2-r}
R-1 |20 “k k K k k
RASRCRES = % =9 * OR-3-r * ®p-2-r
{r+1} _
@
P[DI = gt+(R-2-1)} P{DI = 0} veos P{DI = R-N-r} P{D. = R-3-r]
R-2 |20 Tk . k k T
= I 0y(r-2-r) =% = Opaar * Op-3-r
£:0
@
> P{p; - 211} P{p; = 0}
ril |20 “k 0 0 . 0 k
L]
= & @ e
g0 1 ©

Note: I, - (T,.7,,,)




116

entries, and the disgonal elements are all positive, too. Therefore, it

is easily determined that each transition matrix Pk is primitive.
Moreoever, Theorem III.B.6 insures that each transition matrix

{ Pk} has the unique left eigenvector {Trk'} corresponding to eigenvalue

(=]

1. Therefore, if the nonstationary Markov chain {IP. ; T, > 0}
T BT e

under the <R, r, T> model satisfies the weak ergodicity in Theorem

III.B.4, then by Theorem III.B.5 the long-run limit distribution of

[-<]
{IJ?T 1 can be computed; namely,
k k=0
lim  m -mf = 0 -
K—> o

The possible cyclic behaviour of demand patterns can also be teken
into account for this <R, r, T> case. For example, a seasonal trend
[~<]

of Poisson demand process {N,; t >0} may affect the {IP, ; T, <O}
t = Tk k- %=0
to be kept in the seasonal fashion with d =4 .

From the transition probability matrices P,'s shown in Table
III.2, it is easily checked that Rl; = Pl . P2 . P3 . PA is composed
of 211 positive entries. Recall that a stationary finite Markov chain
is strongly ergodic if and only if it is weakly ergodic. Therefore,
the stationary finite transition matrix Ri; is strongly ergodic, so
that it will converge to a constant matrix, Gh (say). Hence, the
application of Theorem III.B-8 and Theorem III.B.6 to these problems of

cyclic demand patterns will determine the constant maetrices {G E; 1=

1, 2, 3, 4} denoting the seasonal long-run limit distribution of



T

=]

(TP, 5 T, > 1 (or {IP
T BT ko0 Tha+g

n=0,1,2,...})

5 Tpgsy 20 £=1,2, .., & and

The gbove claim can be illustrated with the case of the convergence

of the inventory pocsitions at the end of every second season, in which

the sequence of {P, , Tp > Tp 5 wees ...} converges to G,

TT s
2 "6 10 Ln+2
(say) as n —> o . Denote by Sén) the transition probability matrix

of the {IPT 5 d =4} for the second season in the 2B year. Then
nd+2

(n) . D P . ...
S5 (Pl P2) (P3 B, Py P2) (P3'Ph P P2) (P3-P)_l_-Pl~P2)

(n-1) repetitions

(Pl°P2-P3-Ph)n—l (P;-B,)

"

(Rh)n-l (2,-2,) -

Therefore, if (Rh)n converges to GL as n—> o , then Sén) con-

verges to G, = - (P,P.) as n —>» » , which means that the con-
2 172

vergence follows by Theorem III.B.S8.

As was done under the <nQ, r, T> model, the following investiga-

tion verifies that Corollery III.B.l can also be used to determine the
@

weak ergodicity of the chain {IPT 3T > 03} under this <R, r, T>

k k=0

model, since one of the entries in column "R" will become the positive

maximum value among entries chosen as the least element from each column.

Therefore,
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o = min (D

(r =03 + z P{D(
iel T Ten Ty

]—m + (R-1)} ,
k+l

ZZ P{D( ] =m+il}] ,

k’ k+l

over the set I={0, 1, 2, ..., R-3-r, R-2-r, R-1-r}

0} + EP{D +m+(R~1)1,

= min [P{D 7"
nd+4+1 m=0

iel (T I

(T

nd+2’ nd+2, Tna+ g1

z P{D
m=

=m+ i}] ,
(Tng+g2 Tng+ge1?

where k=nd+f2 (£=1,2, e+, d; n=0,1,2, ...)

[--]
> min [P{D =0} + £ P{D =m+(R-r)} ,

1eT  (TyrTyl w0 (TprTper]

Lel
<
£ PD._ _ - =m+ill,
=0  ‘Fgrtged

over L=1{1, 2,3, ..., d}

Hence, it follows by Corollary III.B.l that the nonstationary Markov
[~}

chain {IP 5 T >0 £=1,2, «.., d} is weakly ergodic,
Tpg+y’ 0A*E= n=0

since oF >0 >0 shown in Eg. (3.3.7)-
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In the case of the stationary finite Markov chain {IPKT; T>0
and k=0, 1, 2, ...} under the <R, r, T> model, the long-run
1imit distribution can be computed directly from the corresponding tran-
sition probebility metrix P, , say, consisted of {PT,ij} for all

i,j es . pT,ij is defined to be

Pp i3 P{IP(y41)r = T+ | By = z+1}
P{IP,, =r+j | I8, = r+i} forall i,je s* ana
k=0,1,2, ...
==}
In fact, the nonstationary finite transition matrix {Pk} in Table

k=0
JIT.2 can be considered as PT by fixing the time index invariant,

where T 1is a constant review period. For example, {D(kT,(k-*-l)T] =i-j1,

instead of {D(T 71" i=-3} , will denote the (i-j) demands
k’Tk+1
during the (k+1)S% review period. It was discussed earlier that the

stationary transition matrix PT is primitive and hence strongly
ergodic, since a stationary finite Merkov chain is strongly ergodic if

and only if it is weakly ergodic. Thus, there exists the unique long-

«©

run limit distribution 1w = {nr-s-l’ Tpips *° % TrR} of {IPkT; T > O}k—o

or the left eigenvector 1w for the matrix PT corresponding to the
eigenvalue 1. The same result also follows directly by Theorem III.B.6.

By the way, the system of equations rr,PT =7 has infinitely meny
R
solutions. Therefore, the second condition Z 1w. =1 mnust be applied
i=r+1

t0 solve for the unique long-run limit distribution 1w .
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In view of the matrix in Table III.2, it will be easier for us to

R

>*
solve the system of (R-r) equations nPT =17 and Z m, =1,
i=r+l

*
where P, 1is the (R-r) x (R-r-1) matrix reduced by removing the
column "R". With this reduced system of ecuations, we shall determine
the closed form of solution vector = . Following 1s the system of

equations the computations will start with;

z .= 1 and from Table III.2 ,
)
O1'"R * 9’1 = TR-l
Oy Tg * 91"y T8 MRz = TR-p

Op-2-r ™ T OR-3-r "R-1 T RU-r TR-2 T """ * O1 TRiz T O Tpup = Tpip

Op-1-r & ¥ ORepor ™R-1 T Or-3-r ROz Tttt T O TRiz T 61 Mp )
* 90 M1 Tpsi -

(3-3.8)

Solving for mp, . (i=1,2, ..., R=1-r) in terms of TR » We cen get
the following set of equations for which the coefficients have a

recurrence relation;
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(1-90)'nR_l = 6wy <
6,
(1-69)mg o = 8y mg + 8"y (6, T-6, *8) g
(ln—eo)'ﬁ3_3 = 93°ﬂR + 92'73_1 + Gl-ﬂg_e >
62 e
1 1 _ 1
= {0 (75~ W gg-v8) 8 (757 ) + 831wy
0 o o
J
(3.3.9)
- . = 1T + T . T 3
(1-8p) Mgy, =6, "mg + O3 Mg g + Oy My 5 ¥ 0T o
e 62 6. "8
1 1 1 1 % .
=06, (= )(=—F ) 7% +6,) + (=% ) +e,1lim
1 {T-g, T-6, /" T7e, " "2 1-6, 3tdmg
2
o2 o,

+92'{(1-90)+92}+93' (1-eo)+9h

and so forth.
Let X, denote the coefficients of m, in equation mp . (i = 1,

2, «.., R=1-r). Then, Eq. (3.3.9) can be simplified as follows:

(1 -6

(1-65) Ky =8, - Ky + 6

el
"

©
)
+
©
=
+
O

(1-9

(1

t
o
S’
0
©
}_..l
S
+
©
o
N
.{.
©
(W]
e
+
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(1-90)-Ki=§ o5 - Ki 5 (X, =1) -
j=1
Thus
1 i
XK. = - Z 0o, K. ., (XK. =1) (3.3.10)
i 1 GO 521 J i=j o)
for i=1,2, ..., R-1-r .
Thence,
R
1l = DI ot
i=r+l
R-1
= {( = KJ)+1}w
i=r+l L R
Hence,
\
1
TR < R-1
1 + Z Ki
tered ) (3.3.11)
ey = K -7g (i =1,2, ..., R-1-1) J

These mp . (i=0,1,2, «.., R-2-r) in Eq. (3.3.11) can be easily
computed on a Digital Computer once the probabilities Gi's (i=0, 1,
2, ..., R-1-r) are known. Another approach to general nxn matrix

problems has been suggested in Isaacson and Madsen (1976).
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D. ZLong~Run Expected Average Annual Cost

Recall the assumptions made in Chapter I that demands occurring
when the system is out of stock are backordered, units are demanded
one at a time, and procurement lead time is constant T . We don't
need to place any additional condition on T such as 7 < Tk for
k=0,1, 2, -..- The reason is that even if an order placed at the
(k—l)st review time is not arrived until the next review time Tk s

the decision on whether an order has to be placed at the time Tk will

- N,
k-1’ k-1’ k k-l
for k=1,2, ..., with {Nf} denoting a nonstationary Poisson

t=0

process representing customer demands by time t . We want to make one

depend upon {IPTk_l} and {D(T Tk]} , where D(T Tk] = N,

additional assumption for these periocdic-review systems that demands in
different periods are independent random variables.

With the background about the long~run limit distributions of

{P,
Ty

we are about to find the distribution of {NIST *E} for € >0 which
k=

Tk-Z 0 for k=0, 1, 2, ...} discussed in the previous section,

can be immediately used to determine the expected on-hand inventory
n[OHTk+§] and the expected backorders E[BOTK+§] > at time T, +E,

in light of the following relations; by definitionm,

NIS IE&

-D

(3.4.1)

]

QHTk+§ - BoTk+§

and hence,
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NIS CHp g £ NS, . 2 0
K

T e T X
(3.4.2)

= BOT +g otherwise .
k Py
Then, using the cost factors discussed in Chapter II, we shall formulate

cost functions under the periodic-review models, <mQ, r, T> and

<R, r, T> , the minimization of which is the criterion to determine

the corresponding optimum operating policies.

l. The formulation of the <nQ, r, T> model for the backorders case with

nonstationary Poisson demands and constant lead times

Treating the inventory levels as discrete variable as well as the

demand variable, we shall first prove that {IP,I, H Tk >0 for k=0, 1,
k

2, ...} and {D(T ,Tk+g'l;Tk->-o for k=0,1,2, ... and § >0}

are mutually independent of each other.

Recall that under the <nQ, r, T> operating doctrine, for k = 0,

1,2, ... an order is placed at a review time Tk if and only if the

inventory position IPT of the system is less than or equal to r .
k
It IPT < r , then a2 quantity nQ 1is ordered, where n is chosen
k
such that r < IIE’T +mQ <r+Q for n=1, 2, 3,.... Thus, immediately
k

after a review, the inventory position of the system will be in one of
the Q states r+1, r+2, ..., r+Q . Therefore, the problem under
this model is to determine the optimal values of Q, r and T which

minimize the objective cost function to be derived later.
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o

Let {ni} be a sequence of nonnegative integer multipliers cf
i=1 ©
Q for possible ordering at each review time Ti and {Nij} (7 = 1,
i=1

2, ..., Q) be a subsequence for which there exists {nlj’ Dpgs o nkj}

associated with the ordering decisions which locate IPT at a level

k
k
r+j . Defining .= X n.., . * Q represents total amount
M =0 M M
of order placed by time Tk . If an inventory system starts with IPO =

r+i (i=1,2, «.., Q , and Ty = 0) , then total amount stored in
by time T, on the books will be equal to (r+1i) + Mk,j - Q . Since
{total amount stored in on the books until immediately after the kth

review time T,} minus {cumilative demand by T, } equals to {inven-

tory position immediately after Tk} , following equality follows;

(Ges) +moQ) - o p g} = 745, (=12, -0, Q)

T Pomy T TETED e g b

In other words, MKJ -Q + (i-3) is the cumulative demend by time Ty

which gets the inventory system to end up with I'PT =r+j .
k

Before proceeding to the next step, the following definition is
needed; for m =0, 1, 2, ...,

. + R e
PP, 3= 273> Dz m g1 = FP(o,p 17173 Fid(q g 4gy =

= P{D(O’Tk] =1i-j5} P{D(Tk’Tk+§] =m} , if i>j (3.k.4)
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= 0, otherwise .

Theorem III.D.l: For the periodic-review <nQ, r, T> inventory system

with nonstationary Poisson demand, constant lead time T > O and pos-

sible backorders, and also with IPy = r+1i (i=2,2, ..., Q) ,

P{IP, =r+j, D } = P{IRp = r+3} P{D =m} ,

(m,k =0, 1,2, «ee, and j =1, 2, «.., Q).

Proof:

By use of the same idea applied in Theorem II.C.L,

P{IPT r + j, D(Tk,Tk+§] = m}

~

. . -+
P0e0,2,1 = 173> D ,n +g] = 2

= |+ = P 1,€] =mlD(O,‘I‘k]=Mlgj.Q’+(i-‘j)}

Mk;j=1

_' P{D(O’Tk] =M. -Q+ (1-5)] )

- s
P{D(O’Tkj = i-j] P{D(Tk,ng] = m}

. z.=lP{D(Tk-’Tk+§] =m} P{D(O,Tk] =Mkj -Q + (i = J)}J

- i
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P0(0,0, 775" Y+ ilP{D(o’Tk] =M -0+ (i3)]

. P{D(Tk,Tk‘*%] = m}

P{IPTk = r+3} P{D(Tk’Tk_i_g] =m} .

Therefore, it is proved that {IPT 1} and {D +§]} are mutually
k

(T Ty
independent of each other.

In order to compute the probability distribution of {NIST +§;
k

(==}

Tk >0 and § > 01 , we need define the following relation; for
k=0

J = 1,2, ..., Q:

+
P{IP. , r+3j, D o o.e1 =J-s} =P{IP, =r+3} P{D =j-s},
Tk ? (Tk’ -Lk ‘ g] Tk (Tk’Tk+§]
if j>s (3.4.5)
= 0, otherwise.
Referring to Eq. (3.4.1),
WY, 7
P{NIS =r+s} = X P{IP,=r+j, D =q =3 -5
Tk+§ j=l Tk (T )T +5]
for s =Q, Q-1, Q-2, ...
: { } 2 7
= Z P{IP, =r+J} P{D =j-s

from Theorem III.D-1 and Eqg. (3.k.5). (3.4.6)
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©

If we assume that {IP& 5 Tk > 0} forms a weakly ergodic Markov
k k=0

chain, then its long-run limit distribution is uniform as shown in Eg.
(3.3.5). If a demand process appearing in a cyclic fashion such as

Parg =% (£=1,2,...,45 n=0,1,2, ...) is taken into account,

the same uniform long-run distribution is also achieved in light of
Theorem III.B.8, or Corollary III.B.l and Theorem III.B.7 since for all
k the kth transition matrix shown in Table III.1 has at least one
uniformly positive column {i.e., o >0 >0). Therefore, for the non-
stationary Markov chain {IPTk; Tk > O}°° which is weakly ergodic or

k=0
appears in a cyclic feshion, the same objective cost expression will be

obtained in Eq. (3.%.20).

From Eq. (3.4.2) and Eq. (3.4.6),

P{OHTK+§ = x} P{NISTk+€ =x}, for x=0,1,2, ...

Q

= S P{IB, =r+j, D =r+j-x}

= g P{IP, =r+3} P{D =r+j-x}" (3.4.7)
P (T, T, +E]

@

. E[OF 1= =% x- P{0O = x}
H;Ilk"-g x=0 Hik+§
@ Q
= = x ZP{IPT=r+j} P{D(T T+§]=r+j-x}+
k’7k

%=0 j=1 k
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Q +
= - = 'l P = ] -
i Zx P{IP& r+3j} {D(TK’TK+§] r+j-x}

J=1 x=0 k
Q ]
= T p X - P{ET = r+j} P{D('T‘ T. 4 ] = I'+j-X}
j=1 x=0 k Tt
> e sy 2 } 2 3
= £ T (r.j-y)P{IP,=r+j} P o =V},
§=1 y=0 Tk (Tk’Tkng
where y =r + j - x
.- 1 (eep) = 2 :
= Z P{IP,=1+] r+j Z PiD =y
r+j
- Ty PD(p g e -v1] - (3.4.8)
y=0 K’k

Thus, the long-run expected average number of unit years of on-hand

inventory (storage) is

Q T+
lim E[OH, ] = lim I P{IR, =r+j} [(r+3) = -
X —> o K kK —> o j=1 k y=0
r+j
P{D =y} - 2 y-PD = y1]
(T, Ty €] 40 (T, > T, €]
Q r+j
= £[ lim P{IR, =r+j}] lim [(r+3) = -
j=lk —> o k k—>o y=0
r+j

Z y-P{D

2o (2,151 = ¥

P{D =y} -
Ty > Ty €]



13 1m () P2 -}
el k> e y=0 = (ToTy*E]
r+j
- yio v P{D(TkJTkng = y}] 2 (3']‘1"9)

from Eg. (3.3.5) .

Note: If a review takes place at time T, , then the next review
will take place at time Tk+l or Tk + ATk , Where ATk = Tk-*-l - Tk .
Everything on order immediately after the review at time Tk will arrive
in the system by Tk + v , but nothing not on order can arrive before
time Tk+l + T or Tk + ATk + 1t . Therefore, we shall consider the
range of & Dbetween T and ATk + T .

The long-run expected average number of unit years of on-hand

inventory incurred per year, denoted by E[ OH]nQ , can be computed as

follows;
Ko AT,
ico By I oL vl 8
E[0H]y = 1lim T (3.4.10)
n K —> o " . A

We can also use the probability distribution of {NIST +§} in
k

Eq. (3-%.6) for camputing E[BO ] . FromEq. (3.4.2) and Eq. (3.4.6),

‘I’k+§

P{BO,

k+§=x} = P{NIS, , =-x} for x=1,2, ... and T<ELTHAT

e
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-~ (r+3) z P

Q
+
= = P{IP, =r+j, D =r+j+x}
=1 (Ty> Ty €]
= £ P{IP, =r+j} P{D =r+J+x} (3.k.11)
=1 (T, Ty *E]
[oe)
.". E[BO = Z x - P{BO = x}
K a1 TS
S x5 3 ) |
= £ x-[ £ P{IP, =r+j} P Leq = T+J+x}]
X= x=1 Tk (Tk’ Tk * g]
Q ©
= £ P{IP, =xr+j} [ Zx-PD =r+j+x}]
Q =)
= £ PP, =r+3j} £ (y-r-3) P 1 =Y s
5=l Tk Ger+5+l (T> Ty ¥E]
where y=r + J + X
Q =)
= & P{IP,=r+3}[ £ y-PD =y}
j= T y=r+j+1 (T ’Tk+g]

[><]

J=r+j+1 (T, Ty #E ] = v

Q T+
Z P{IP =r+j}[E[D 1- Z2y-?D =yl

3=1 k

-(r

r+]j

=9 (- RGP y})J



132

Q
= = PIR =r+j}[EfD 1-(r+3)
,j=l Tk ( TkJ Tk+§]
r+J r+j
. et or )
+ (r+3) jiOP{D(Tk’Tk+§] vl yioy PLD(Tk’Tk"'g] y}]
Q nTk+§
= = P, =r+a‘}[J A(w)du - (z+3)
j=1 k T
k
r+J r+j ]
" rea) YiOP{D(Tk’Tk+§] R yioy . P{D(Tk’Tk+§] =y,
since
Tk+g
E [D(T ’Tk+§]] = [ x(wau from Eq. (3.3-2)- (3.k.12)
T
k

(-]

Under the weak ergodicity assumption on {IPT H Tk >0} s
k

k=0
Q T*s
lim E [BoT +§] = [ 1lim P{IPT =r+3}] 1lim [J" x(u)du
K —> o k J=1 k—>« k k —>» o T
k
r+j
- (r+3) + (x+3) = P{D =y}

r+j
- Z y-PD

3=0 (T, Ty#€] v
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L@ TS r+5
== = 1lim A(u)du - (r+5) + (r+3) = P{D =y}
Y ke Tj y=o = (T Tyl
k
r+j
- = y-PD (3.4.13)

+g7 = V3

Therefore, the long-run expected average number of unit years of back-
orders (or shortage) incurred per year, denoted by E [BO]nQ , is given

as follows;

T+ATk
1
s = ° E [BO 1 4ag
k0 0Ty TS
E[B0] = ] _111; - : (3-4.14)

X

The random variable, say ABOT P representing the number of
k

%

backorders incurred between Tk+7 and Tk+l+T can be thought of as

the difference between two random variables BO and BO denot-
Tk+7 Tk+lT

ing the number of backorders on the books at time Tk+7 and Tk*l+7’

respectively; that is, ABO = BO .. = BO . Thus,
Tk+T Tk+l'7 Tk+T

=080y o 1 = E[30p  op - BOp ]

]
=
—
8
H
+
e |
(]
]
t=
-
ve)
O
=
+
-3
[}
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Q Tie1™T
=t = PR, =r+3}| [ A(wdu- (r+3) + (r+3)
j=1 K+l .
r+j r+]j
= P .1 =¥}- Z y-P{D . =V}
520 Tia12 a7 5=0 (Tisn o Tan ™™
Q Tk+'r
- | T B{IR, =r+3} | [ X(wau - (r+3) + (r+3)
j=1 k
.
r+j r+]
- Z P =y} - Zy- P{D =y} . (3.4.15)
y=o = (ToTe*r] y=0 Ty Ty ¥

The long-run expected aversge number of backorders incurred between

time Tk+'r and Tk+l+~r is

lim E [ABoT 4] = 1lim E[BO, . J- 1lim E[B0; ]
- ) k—>o k+l kK—>o k'
. @ Thsy™T T, T r+j
=5 =l [ A(wlan - [ x(w)au) + (z+)) =
=l k—>e|\g y=0
k+1 T
- | P{D -P{D =
r+j
+ Sy. |P[D =y} - P{D =yl (3.4.16)
=0 (Tyes Ty 7] (Tiag o T ™71
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Thus, the long-run expected average number of backorders incurred per

year is

X
k§0 E [ABoTk+T]
E [4B0] o = lim =
R g oe T_+T
X
E [BoTK+T] - E [B0]
= lim . (3.4.17)
K —> o TK‘l‘T

We now need to determine the expected review cost per period and
then estimate the ensemble average to obtain the long-run expected
average annual cost expression. Denote by W the cost of review.

Since k reviews are made by time Tk , the long-run average annual

cost of reviews is lim kT'W . With the cost A of placing an
K—> k

order, the average annual ordering cost can be determined if we know

the probability PO a that an order will be placed at any given review

time. Given that the inventory position of the system is r+Jj immedi-

ately after a review, say T, , then the probability that it will be

less than or equal to r at the time of the next review Tk +1 is the

probability that j or more units are demanded during the review period

for j=21,2, «., Q@ and k=0, 1, 2,...
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> j} from Theorem III.D.l1. (3-4.18)

P{D
Plr, 0]

lim P{IP, <r} for k=0,1,2, ...
k—>o k+1

Hd
il

od

Q
lim = P{IF; =r+ 3} P{IPT Sr[IPT =r+3)

k—> o j=1 k k+1 k
: { ¥ F{ 3
= lim £ P{IP, = r+j} P{D >3
k—>» o j=1 Tk (Tk’ Tk+l]

from Eg. (3.4.18)

lim P{D 1 . (3-%.19)

k—2>o

o
Coe ™

] O
}.J

23
(T Ty ]

Therefore, the long-run average annual cost of placing orders is
. A - (x -Pod)
lim E'
K—>= k

So far, we have evaluated all the terms needed in the cost expres-
sion. Hence, with the inventory carrying charge I , the unit cost of
an item C , the fixed cost per unit backordered B and the cost per
unit year of the shortage (backorders) % discussed in Chapter II, we

can formulate the long-run expected average annual cost expression &as

follows;
. A-k-P
e(mQ,r,7) = ( U ST )+ ( lim ——2) + 1B [0H]
K —» o k k—> o k

+B - E [ABO]nQ + Q-E [Boan . (3.4.20)
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2. The formulation of the <R, r, T> model for the backorders case with

nonstationary Poisson demands and constant lead times

Recall that under the <R, r, T> model (or an "Rr" operating
doctrine), an order is placed immediately after the review time to bring
the inventory position up to R , if the inventory position {IPT 1 at
a review time T, (k =0, 1, 2, ...) is less than or equal to }; .
Therefore, our objective under this model is to determine the optimal
values of R, r, and AT, =T, - T (k =0, 1, 2, ...) which mini-
mize the inventory system operating cost. Thereby, we shall derive a
cost function.

Under the same assumptions as those made for the <mQ, r, T>
case, it is known that an "Rr" operating policy is the optimal one,
but the <R, T> and the <nQ, r, T> policies are only approxime- -

tions to the optimal "Rr" doctrine.
[+-]

We shall prove that {IP, ; T, > O} and {D ; T, >0;
T’ 'k =0 (Tk,‘l‘k+§] k
(==} (=]
g >0} are mutually independent of each other. Iet {OD Z'} be
k=0 - g1
a2 subsequence of {OD z} representing the amount of possible orders
=1

placed at each review time, for which there exists {ODlj, ODQJ, cesy

ODkJ.} leading the inventory system to have {IPT =r+j} for j=1,
k

2, «.-, Q@ . Assume that the inventory system starts with IPO = r+1

(i =1,2, ..., Q) - Then, under the above assumptions the next eauality

follows;

{(r+1) + 8T} - {D<O’Tkj} = r+j, (3.4.21)
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k

where ST, = £ OD,.
o W

until immediately after the kth review in connection with

denoting total amount stored in on the books

{IP,, = r+j} and having

Tk
o, >R-r, if D > R-r (£ =1, 2, ...)
£ (T, 15T,
= 0 A otherwise
.. D(O,Tk] = sq, + (i-3) (3.4.22)

Theorem III.D.2: For the periodic~review <R, r, T> inventory system

with the same restrictions placed in Theorem III.D.1,

P{IP, =r+j, D =m}- = P{IP, = r+j} P{D =m} ,

(m,k =0, 1, 2, eee3 J=1,2, «vv, Q).

Proof:
By the same approach applied in Theorem III.D.1,

P{IP, =r+3, D Leq = o}
T (T, s T, *E]

~
. . +
(0,03 = 1795 Xp,m ag7 =2+

£ P =m|D,n . - =ST, +(i-3)} P{D =81, +(i~j)}
ST, =R~r Ty Ty +E] i G {(O’Tk] BT B

—
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~

L et
P{D(O,Tk] =i-3} P{D(Tk’Tk+§] =m} +

[-~]
= P{D
_STk:R-r

-

(n,mre] =™ FP(o,y = 8K+ (1-9)

=1 -517 sTkiR-rP{D(O’Tk] =8T, + (1 -3)1] P{D(Tk’Tk+§] =m}

[*200, 1,

P{IP, =1r+3} P{D = m}
T (T, , T, +E]

.". It is proved that {IPbk} and {D(T ’Tk+§]} are mutually independ-
ent of each other.

[oe]
The long-run limit distribution of {IP 3 T. >0} under the
T BT koo

<R, r, T> case was discussed later in the previous section. The
necessary and sufficient conditions were given in Theorem III.B.4t and in
Theorem III.B.5. Theorem III.B.8 requires one necessary condition for

a nonstationary Markov chain, appearing in a cyclic pattern such as

Patg = P, (¢=1,2, «.c.,d n=0,1,2, ...), to be strongly
ergodic. It was shown in the previous section that the long-run limit
(==}

distribution of a nonstationary Markov chain {IPT k; associated
k k=0

with nonhomogeneous Poisson demands appearing in a cyclic fashion can
be easily estimated by using Theorem III.B.8, since for all k the kth
transition matrix in Table III.2 has at least one uniformly positive
column (see Eq. (3.3-.7)) and hence the stationary matrices R, (£ =1,

2, ..., d) are strongly ergodic.
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Under the assumption that the finite long-run limit distribution
of {IPT 1 is achievable, we shall derive the long-run expected average

annual cost expression. Using Theorem III.D.2 and the relations of Eq.

(3.4.1) and Eqg. (3.%.5),

R-r

+
P{NIS =r+s} = & P{IP, =r+3, D =j-=-s
for S = R-r, R-r-1, ..., O, -1, =2
R-r .
= = P{IP, =r+j3} P{D =3-s}"
i1 T (T > Ty *E ] ’
for T <E S THAT - (3-%.23)
From Eq. (3.4.2) and Eg. (3.4.23),
P{OHTk+g=x} = P{NIsTk+§=x} for x=0,1,2, ...
R-r +
= & P{IP, =r+j, D =r+j=-x}
j=l Tk ? (Tk’Tk+§]
R-r ¢ }+
= Z P{IP, =r+j} P{D a=r+j=-x} . (3.4.24)
3= Ty (T, > T, ¥E]
(=]
. E[0H, ..] = x - P{O = x}
el T ",
(=~
= Z x-P{NIS_,

- x}
x=0 T *8
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- £ x- T P{IP, =r+j} P[D o =r+i-x}
x=0 =1 Tk (T T ¥E]
R-r o S
= I x-P{IP, =r+j} P{D iem =S TFI-x}
=1 x=0 Ty (T T €]
R-r r+j
= £ P{IP, =r+3j} = x-P{D =r+j-x}
J= Ty x=0 (Tk’ Tk-}-g:l
R-r r+j
= £ P{IP, =r+3j} = (r+j-y) P{D =y},
j= T y=0 (T, T +E]
where y=r + J -Xx
R-r r+j
= Z P{IP, =r+3} [(z+3) £ P{D =y}
=1 Tk y=o = (T TytE]
r+J )
- Z v P{D = y}] . (3.1(--25

Therefore, the long-run expected number of unit years of on-~hand

inventory (storage) is

R-r T+]j

lim E [OHT +§] = lim z P{IPT = r+j}[(r+j) =

k —> o k k—> o j=1 k y=0
r+]

S y-PD

o Pz e = I

§ (g1 g1 7YY -



k2

R-r r+J
= 2 [ lim P{IPT =r+3}] lim [(r+j) =
j=1 k —> o k Kk —~>ow y=0
r+]
Zy-P{D (3.4.26)

C (g VR 7 E Y ED (g p ey =]

Thus, the long-run expected average number of unit years of on-hand

inventory incurred per year, denoted by E [OH]R , follows;

'r+ATk

% J E EOHTK+§] dg
E [OH]R = lim . (3.4.27)

Likewise, using Eq. (3.%.6) and the relation of BO; .. Wwith

s
NISp ¢ i Ea- (3.+.2),
P{BOTk-i-g =x} = P{NISTk+g =-x} for x=1,2, ... and 71 <E< THAT,
R-r +
= Z P{IP, =r+j,D Lem = THJ +x}
521 Ty (Tk,Tk.gj .
R-r
= = P{1P, =r+j3} P{D = r+j+x} (3.4.28)
3= T, (T, T +E]
(==
.. E[BO =2 x- P{BO, .. =x}
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© R-r

= Z x- I P{IP, =r+3} P{D e =TI +xX}
x=1  3=1 Tk (T, Ty €]
R-r ®

= = P{IP, =r+j} £ x - P o oagq = TH3 X}
=1 Tk x=1 (T, Ty #E ]
R-r =]

= Z P{IP, =r+j} z  (y-r-j) P{D .n =¥} , where y = r+3j+x
j =1 Tk y:r-i-j +1 (Tk’ Tk-"gj

R-r r+j
= jz=: P{IPTk=r+J} E [D(g ’Tk+§]] - yioy . P{D(Tk’Tk_*_g] =y}
r+j
- (r+3) (1 - = P{D(,., T + ]=y})]
y=0  ‘TerT'E
Br e - () + (o) D 3
= Z P{IP, =r+j} A(u)au - (r+j) + (r+3) = P{D =y
SE N y=0 (T Ty*E]
k
r+j
- yioy' . P{D(Tk,Tk'*'g] = y} 5
since
T, +€
E [D(Tk’Tk+§]] [ X(y)au, from Eq. (3.3.2).  (3.4.29)
T
k

[=<]
Assuming that {IP, ; T, > O} is strongly ergodic,
T F T k0
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R-r
gj = = [ 1lim P{IP&k =r+3j}]

lim E [BO,
5 4l ke

k> k

T*s r+j
lim [ A(wau - (r+3)+(r+3) = P{D =y}
kK —» o ,.i{ ¥y=0 (T ’Tk+§]
k
r+]
- ° —3 Y .’ -
Byt e o 52

Thus, the long-run expected average number of unit years of backorders

incurred per year, denoted by E[BO]R , is

K N 1'+ATk
L = E[BO, ,.] d§
k=0 Oy TI Ty *s
E [BO); = lim . (3.4.31)
K —> « K
Also,
E [ABO 7 = E[RO - BO ]
Tk+7 Tk+l+T Tk+T
= E [BO 1 - B[R0 ] [3.4.32)
Tyip T T\ +T
where
R-r Tk+7
E[B0p .0 = Z P{Th =r+3} | [ Awau-(r+3) +
J= k

T



ks

r+j r+j
r+3j) = PD = - Zy-P{D =
( J) y- { (T ’Tk+T] y} ge Yy { (Tk’Tk+T] y}

The long-run expected number of backorders incurred between time Tk+7

and T, +r is
lim E [ABO ] = 1lim E [BOQ ]- 1im E [BO 7.
K —> o ke Thid™ ko Tytr

(3-4.33)

Thus, the long-run expected average number of backorders incurred per

year, denoted by E [ABOJR , is

K

T E [ABO ]
k=1 Tyt
lim

k—>o TK'*"T

E [ABO]R

E [BOTk+-r] - E [B0_]
lim . (3.4.34)
kK —>» o Tk+T

The probability Pod of an order being placed at a given review time

can also be computed by the same approach in Eg. (3.4.19);

od

I
L
3
™
Hd
~
H
Il
H
-+
[N
L
Hd
~
H
A
H
K
Il
=
+
[
(U
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R-r
= lim £ P{IP, =r+j} P{D
Kk —>o =1  k (Tyer Typq

]Zj} >

since from Theorem III.D.2

P{If, <r|IB, =r+j}

k+1 k
= P{D >3l =r+3}
(T Tyeyy ] Ty
= P{D >3}
(T Ty ]
R-r
= z [ um PR, =r+3}]1 [ lim PDp o 1231 -
j=1 k2> o= k kK —>o kK’ Tk+l
(3.4.35)

Hence, with the review cost W the long-run expected average

annual cost function can be given as follows;

g® 7, T =( un £ + ( lnm )
k—>o k k—> = k
A
+B - E[4BO], +B - E [BO]R . (3.4.36)

The rest of this section will cover the derivation of the long-run
[+<]

expected sverage annual cost expression in the case of {IP ;5 T >0}
Ty B~ k0
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associated with nonhomogeneous Poisson demands appearing in a cyclic

pattern.
-]
Tet {Pk} be the transition probability matrices of a cyelic
k=0 -
nonstationary Markov chain {IPT 3 and repeat themselves such as

k k=0

Pats = By (¢=21,2, .-, d; n=0,1,2, ...) , where k =nd+4 -

Dencte by T, = (gz,r+l’ 8y pip? T gz’R) the finite row wvector of a

constant matrix GZ for £=1, 2, ..., d . Then, according to Theorem

III.B.8, ﬂz can be defined as the left eigenvector of stationary
finite matrix Rz corresponding to eigenvalue 1 and hence the long-
run limit distribution of {IP& 1} as n —» o . Therefore, in the

nd+4
approach to the <R, r, T> case which takes into account the cyclic

behavior of stochastic demands, we can also derive the relevant expected
average annual cost expression similar to the above work.

Using Theorem III.D.2 and the relations of Eg. (3.4.1) and Eg.

(3-%.5),

R-r
. . +
r+s} = = P{TPT =r+3j} P{D(T m 7 =3 -8}

P{NIS . =
nd+4 3=1 nd+4 nd+4’ nd+f >

(3.%.37)

for T S8 S T¥ 8L, p WheTe ALgrs = Thaeser ~ Tnawg
From Eq. (3.%.2) and Eg. (3.14.37),

P{O = x} = P{NIS
{ HTnd+z+§ { Tna+g*s
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R-r
= Z P{IPT =r+j} P{D(T

wg] =T -x}7. (3.4.38)
j=1 nd+{

na+4’ Tna+g’e

From Eq. (3.4.25),

©

E[O = & x - P{O = x}
Hrnd-i-,@ 7 x=0 HTnd+z
R-r ) r+j
= Z P{IP =r+j} [(r+a‘ z P =y}

j=1  Tna+s y=0  (TngepTnaes™s]
r+j }]

- Z y-PD (3-%.39)
y=0 (Tpqep Tnasg ™8]

Therefore, the long-run expected number of unit years of on-hand inven-

tory (storage) is

R-r
lim E [OHT g =z [ 1lim P{IPT =r+j}]
n—>o nd+4 j=1 n—>o nd+4
r+j

- lim [(zr+j) = P{D(T €] = v}
n—>ow y=0 nd+4° nd+£
r+3

- Z y-PD v}l
=0 (Tpgeg Tnarg™s]

R-r r+J
= Zgza lim (r+j) = P{D(T ]=y} -
=l ’n—">o y=0 nd+g’ nd+z
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r+j
z y - P{D = y} , (3.}4-.1}-0)
y=0 (Tnd+z’Tnd+z+gj
where
+ y
and+z+§ Tnd+,€ 5
- | auway | ] A (u)du
Tha+g Tha+s
P{D m = Y} =
(Tnd+2’lnd+z+§] y!

Thus, the long-run expected average number of units years of on-hand

inventory incurred per year, denoted by E [OH]RC , is

N 4 L PLTATnd+z
s = E [0 JaE
n=0 4=1 STna+g éj and+£+g
RC N —> o N
(3.4.41)
where
Blrgrs = Tnarg+l ™ Tnatg
Similarly, using Eq. (3.%.2), Eq. (3.4.6), and Eq. (3.4.28),
P{BO = x} = P{NIS . =-=x} for x=0,2, ...
Tnd+£+§ Tnc'3.+)2'g
(3.5.42)
R-r
= I P[IP =r+3j} P{D =r+j+x} .
5=1 Tha+g (Tpae g Tngs &
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(==}
.". E[RO 1= 2= x - P{BO = x}
Tna+g™"  xa1 Tna+g"s
R-r TI’J.(i'*',@-{“g
= z PR, =r+j}| [ A(u)au - (r +3)
nd+4
r+j

+ (r+j) Z P{D

=y}
y=0  (Tngeg Tnaeg™s]

r+j
- 2 y- P{D,, e =Y s (3.4.43)
=0 (Toarg Taars ™)

from Eq. (3.&.29) .

Therefore, the long-run expected number of units years of backorders

(shortage) is

lin E[BO; ]
n— o nd+4
R-r Tn<1+Jl+§
T e wm een] s | e
j=1| n —=> = nd+4 n—>e| T
nd+4
r+j r+j
+ (r+j) = P{D =y}- 2 y-PD =y}
¥=0 (Tnd+,?,’ Tnd+z+§] ¥=0 (Tnd+z’ Tnd'*'l?:*-gj
R-r Tnd+z+§
- Tg lim [ A(w)du - (r+) +

NS P
J=1 n—>>o Tndﬂ?,
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(r43) T 15 )

r+j) £ P{D =y}l- Zy-PD =y

y=0  (Tna+g?Tna+g*S] y=0 TaareTnaeg™S :
(3.4.4%)

Thus, the long-run expected average number of unit years of backorders

incurred per year, denoted by E [BO]RC , is

Noda THAT a+g

5z E[B0,
n=1 g=1 YTna+g Tna+gS
E [BO]RC = . lim . .
—_>
(3-k.k5)

Jag

From Eg. (3.4.32) and Eg. (3.4.33), the long-run expected number of

backorders incurred between time Tnd+z+7 and Tnd+z+l+7 is

lim E [ABO, +T] = lim E [130T 1= lim E[BOT ]
n—>o “nd+4 n—>ow nd+g+l’' n —P o nd+g

ot (3.4.46)

Therefore, the long-run expected average number of backorders incurred

per year, denoted by E [ABO]Rc s is

N a
£ £ B[O, ]
E [ABO],, = lim 220 41 nd+4
N —> o Tnatt
E[B0, ,1-E[BO]
= lim ad . (3.4.57)

N—o TNd+T
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From Eq. (3-4.35),

Pg= lim P{IP, <r} for n=0,1, 2, ...

n—>oc nd+4+1
R-r

= Z [ lim P{IR =r+3j} lim P{D(T . 1233
j=1 n—>o nd+4 n—>o nd+4’ nd+g+l-
R-r

= Z g, . lim P{D >3 . (3.4.48)
j=1 2,3 n—»cew (Tnd+z’Tnd+z+l]

Hence, with the review cost W the long-run expected average annual

cost function in the cyclic <R, r, T> case is formulated as follows;

A- (M) -P
S(R,r, 1), = ( 1im X )+ ( 1im = % )+ 1c-E [OH],,
N—>o Na N—>c Na

A
+ B-E [ABO]o, + B+E [BOl,, - (3.k.b9)



IV. SUMMARY AND CONCLUSION

This study has aimed at the analysis of nonstandard inventory
models, with general iid inter-demand times for transactions reporting,
and nonstationary Markov demand for periodic review.

The subject has been developed in the context of the case in which
demands occurring when the system is out of stock are backordered,
units are demanded one at a time, and procurement lead time is constant.
The inventory systems under study were assumed to consist of Jjust one
stocking point with a single source of resupply. The relevant cost
parameters involved in the objective cost expressions were assumed to
be in stationary variaticens with time.

Under the above assumptions, the cumulative demand by time ¢t ,
{Nt; t > 0} , is a discrete-valued continuous-parameter stochastic proc-
ess (a renewal process) with sample paths increasing in unit steps.
{Nt} was analyzed first to describe probabilistically the inventory
position {IP,; t >0} , under the <Q, r> model for transactions
reporting, and under the <nQ, r, T> and <R, r, T> models for
periodic review. It was shown that {IP_; t > 0} totally depends on
s t2> 0} and an initial inventory position {IPO} .

In the case of the <Q, r> model, the relation between {Nt}
and the n°® renewal time § , where N_ = sup{n; s, < t} , played =
key role to prove that {Et--r} and the cumulative demand between time
t-r and t , {D(t-'r,t]} , are mutually independent of each other (see

Theorem II-.C.4). Corollary II.B.l developed during this study and Key
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Renewal Theorem II.B.6 were applied to the computation of the asymptotic
limit distributions of {IP.t_T} and {D( t-1, t]} in, respectively,
Theorem II.D.l and Thecrem II.D.3. Then, the joint distribution of
{IPt_T} and {D(t-'r,t]} was formulated in Theorem II.C.4t. Cnce the
distribution of I\IISJc in Eq. (2.5.3) was determined by use of the joint
distribution, the distributions of the on-hand inventory {OHt} and
the backorders {BOt} were easily computed in, respectively, Ea. (2.5.k4)
and Eq. (2.5.8). Thus, the evaluation of their long-run expected values
E [OH]Q in Eq. (2.5.7) and E [BO]Q in Eq. (2.5.11), which were neces-
sary for the long-run expected average annual cost expression, was
straightforward. Finally, the cost expression for the <Q, r> model
was derived in Eq. (2.5.15).

In addition to the assumptions mentioned above, one more assump-
tion was added in the case of periodic review inventory systems, i.e.,
that demands in different review periods are independent random vari-
ables.

In the case of the <nQ, r, T> model, Theorem III.B.7 was applied

-]
to determine that the long-run distribution of {IPT 3 T 2 03}
k

k=0
associated with the nonstationary Poisson demand process {D(T T J;
k’"k+l
-~} (=~}
T, > 0} is uniform when {IPT 3 T 2 0} is weakly ergodic,
k=0 k k=0
-
where (Tk’ Tk+l] represents the (k+1)5° review period with To =0 -

However, if the cumulative demand process {N,; t > 0} =appears ir a

cyclic pattern for which the corresponding transition probability
-~}
matrices Pk of {IP, 1} repeat themselves in a cyclic fashion
Tx k=0
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(that is, Pasg=F, for £=1,2,...,d and 2=0,1, 2, cee)

then the long-run limit distribution of {II& } is uniform. This
k

result was shown in Eg. (3.3.6).
Thus, we came to the conclusion that Theorem ITI.B.7 is robust for
this <nQ, r, T> model, because whatever the demand distributions are

they will be formed into the corresponding doubly stochastic matrices

(=~}
for {IP, ; Tk<2 0} ané thence the uniform limit distribution will
k=0
be ended up with. The uniformity leads to the standard computation
of expected cost. In Theorem III.D.1l, it was proved that {IPT 1 and
k
{D .43 €>0} (k=0,1,2, ...) are mutually independent of
N (Tk’Tk?gj -
each other. Given the result in Theorem III.D.1, the distribution of

{NIS 1} was derived in Eq. (3.4.6), and hence the long-run expected

T, +8
average values of E [OH]nQ and E [BO]nQ were evaluated in, respec-
tively, Eq. (3.4.10) and Eq. (3.4.14). The probability, Pod , that an
order will be placed at any given review time was also taken into account
in formulating the long-run expected aversge annual cost expression in
Eq. (3.k.19).

In the case of the <R, r, T> model, conditions from nonstationary
Markov Chain Theory were given in Theorem III.B.4 and Theorem III.B.5
which, together with an easily verified conditim for weak ergodicity
in Theorem III.B.4t and Corollary III.B.1l, are sufficient for the distri-
butional convergence of {IPTk} , and hence of {NISTk+§} for £§2>0
end k=0, 1, 2, ... Theorem III.D.2 proved that under the model,

{IP., 1 and {D( g>0} (k=0,1,2, ...) are also mutually

Ty T, T, *€1°
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independent of each other. Thence, the distribution of {NISTk+§} was
determined in Eg. (3.4.23), and E [OH]R and E [130]R were evaluated
in, respectively, Eq. (3-4.27) and Eq. (3.4.31). The long-run expected
average annual cost expression was finally derived in Eg. (3.4.34).

This study also included an approach to the <R, r, T> case which
takes into account possible cyclic behavior - of demand. The result of
Eq. (3.3.7) indicates that the strong ergodicity condition of Rd in
Theorem III.B.8 is satisfied, since Rl:- turns out a stationary finite
primitive matrix. Therefore, the long~-run limit distribution of sub-

sequences {IF, 1} is the row vector of the corresponding limit matrix

Tnd+z

{Gz} for £=1,2, ..., 4 and n=0,1, 2, .-.. The corresponding
cost function was derived in Eg. (3.%.49).

In the case of the <R, r, T> model with stationary Poisson
demand studied in Hadley and Whitin (1963), the simpler closed form of
solutions for the long-run limit distribution of {IPk 5T > 0} (x =0,
1, 2, ...) was derived in terms of recurrence coefficients in Eg.
(3.3.11).

The application of nonstationary Markov Chain Theory to periodic-
review inventory control is a more realistic and better approach, and
also relatively easy to make because the finite transition matrices are
involved in the determination of long-run limit distribution. Once
having derived the cost functions § , Mathematical Programming (inciud-
ing Dyramic Programming) technique will be required to determine the
relevant optimal velues of Q, r, R and T on a Digital computer

which minimize & .
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The <R, T> model is a special case of the <nQ, r, T> model
with @ =1 and R =r+1 . Therefore, once having obtained the
equations for the <nQ, r, T> model, the derivation of the cost funec-
tion for the <R, T> model will be straightforward under the same

assumptions which apply in deriving the <nQ, r, T> model.
A. TFurther Research

The extension of this study to other inventory systems with random
lead time or with random demand units will be an immediate challenge.
For example, if we assume that lead times are independent and the range
of the times is restricted less thaa T , where T = min ATk (k = 0, 1,
2, ...), and orders are received in the same secuence in which they
were placed, then the inclusion of stochastic lead times will be allowed
in the periodic-review models developed in Chapter IITI by accounting

for the distribution of lead times as follows; for example,

E [B0]o = lin

K->« -
K Myy BT Ty ¥0T
T = E[BO, ,.)4€ . (1) - £ (7, ,,)aT dT
oo ATy g {, Tf T, € L 'k A S !
k

X

where
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(f (-) = the probebility density function of the random lead

L

time I‘k of the order placed at tims T such that

k
J L, < ATy

fLK (+) = the probability density function of L.y Of the
+1 1

. m .
\ order placed at time Tp4q Such that Lk+l < AT 4
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